Skip to main content
Glama

n8n MCP Server

analyze_workflow.py1.59 kB
#!/usr/bin/env python3 """ Анализ структуры существующего workflow. """ import requests from config import config def analyze_workflow_structure(): """Анализируем структуру существующего workflow.""" try: headers = config.get_n8n_headers() response = requests.get(f'{config.n8n_base_url}/api/v1/workflows', headers=headers) if response.status_code == 200: workflows = response.json() if workflows and len(workflows) > 0: workflow = workflows[0] print('📋 Структура существующего workflow:') print(f'🔑 ID: {workflow.get("id")}') print(f'📝 Name: {workflow.get("name")}') print(f'✅ Active: {workflow.get("active")}') print(f'🔗 Nodes count: {len(workflow.get("nodes", []))}') if workflow.get('nodes') and len(workflow['nodes']) > 0: first_node = workflow['nodes'][0] print(f'🔍 Первый node: {first_node}') print(f'📝 Node keys: {list(first_node.keys())}') else: print('⚠️ Нет существующих workflow для анализа') else: print(f'❌ Ошибка получения workflow: {response.status_code}') print(f'📋 Ответ: {response.text}') except Exception as e: print(f'❌ Ошибка: {e}') if __name__ == "__main__": analyze_workflow_structure()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Ospray-creator/n8n-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server