Skip to main content
Glama
OrionPotter

Meilisearch MCP Server

by OrionPotter

update-embedders

Configure embedders for vector search in Meilisearch indexes to enable semantic search capabilities.

Instructions

Configure embedders for vector search

Input Schema

NameRequiredDescriptionDefault
indexUidYesUnique identifier of the index
embeddersYesJSON object containing embedder configurations

Input Schema (JSON Schema)

{ "$schema": "http://json-schema.org/draft-07/schema#", "additionalProperties": false, "properties": { "embedders": { "description": "JSON object containing embedder configurations", "type": "string" }, "indexUid": { "description": "Unique identifier of the index", "type": "string" } }, "required": [ "indexUid", "embedders" ], "type": "object" }

Implementation Reference

  • The handler function that implements the core logic of the 'update-embedders' tool. It parses the input embedders JSON, validates it as an object, and performs a PATCH request to update the embedders configuration for the specified index in Meilisearch.
    async ({ indexUid, embedders }) => { try { // Parse the embedders string to ensure it's valid JSON const parsedEmbedders = JSON.parse(embedders); // Ensure embedders is an object if (typeof parsedEmbedders !== 'object' || parsedEmbedders === null || Array.isArray(parsedEmbedders)) { return { isError: true, content: [{ type: "text", text: "Embedders must be a JSON object" }], }; } const response = await apiClient.patch(`/indexes/${indexUid}/settings/embedders`, parsedEmbedders); return { content: [{ type: "text", text: JSON.stringify(response.data, null, 2) }], }; } catch (error) { return createErrorResponse(error); } }
  • Zod schema defining the input parameters for the 'update-embedders' tool: indexUid (string) and embedders (string representing JSON object).
    indexUid: z.string().describe("Unique identifier of the index"), embedders: z.string().describe("JSON object containing embedder configurations"),
  • The server.tool() call that registers the 'update-embedders' tool with the MCP server, specifying name, description, input schema, and handler function.
    server.tool( "update-embedders", "Configure embedders for vector search", { indexUid: z.string().describe("Unique identifier of the index"), embedders: z.string().describe("JSON object containing embedder configurations"), }, async ({ indexUid, embedders }) => { try { // Parse the embedders string to ensure it's valid JSON const parsedEmbedders = JSON.parse(embedders); // Ensure embedders is an object if (typeof parsedEmbedders !== 'object' || parsedEmbedders === null || Array.isArray(parsedEmbedders)) { return { isError: true, content: [{ type: "text", text: "Embedders must be a JSON object" }], }; } const response = await apiClient.patch(`/indexes/${indexUid}/settings/embedders`, parsedEmbedders); return { content: [{ type: "text", text: JSON.stringify(response.data, null, 2) }], }; } catch (error) { return createErrorResponse(error); } } );
  • src/index.ts:68-68 (registration)
    Top-level registration call that invokes registerVectorTools to add vector tools, including 'update-embedders', to the main MCP server instance.
    registerVectorTools(server);

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/OrionPotter/iflow-mcp_meilisearch-ts-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server