Skip to main content
Glama
OrionPotter

Meilisearch MCP Server

by OrionPotter

enable-vector-search

Activate vector search functionality in Meilisearch to enable semantic similarity-based document retrieval.

Instructions

Enable the vector search experimental feature in Meilisearch

Input Schema

NameRequiredDescriptionDefault

No arguments

Input Schema (JSON Schema)

{ "$schema": "http://json-schema.org/draft-07/schema#", "properties": {}, "type": "object" }

Implementation Reference

  • The handler function executes the tool logic: POST to Meilisearch /experimental-features with vectorStore: true, returns response or error.
    async () => { try { const response = await apiClient.post('/experimental-features', { vectorStore: true, }); return { content: [{ type: "text", text: JSON.stringify(response.data, null, 2) }], }; } catch (error) { return createErrorResponse(error); } }
  • Registers the enable-vector-search tool on the MCP server with no input parameters and the inline handler function.
    server.tool( "enable-vector-search", "Enable the vector search experimental feature in Meilisearch", {}, async () => { try { const response = await apiClient.post('/experimental-features', { vectorStore: true, }); return { content: [{ type: "text", text: JSON.stringify(response.data, null, 2) }], }; } catch (error) { return createErrorResponse(error); } } );
  • src/index.ts:68-68 (registration)
    Main server initialization calls registerVectorTools, which registers the enable-vector-search tool among others.
    registerVectorTools(server);

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/OrionPotter/iflow-mcp_meilisearch-ts-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server