Datadog MCP Server

Integrations

  • Enables log search, trace span search, and trace span aggregation functionalities through the Datadog API, allowing users to retrieve and analyze logs and distributed trace data with flexible query and aggregation options.

Datadog MCP Server

English (This Document) | 日本語

MCP Server for Datadog API, enabling log search, trace span search, and trace span aggregation functionalities.

Features

  • Log Search: Search and retrieve logs from Datadog with flexible query options
  • Trace Span Search: Search for distributed trace spans with various filtering options
  • Trace Span Aggregation: Aggregate trace spans by different dimensions for analysis

Tools

  1. search_logs
    • Search for logs in Datadog
    • Inputs:
      • filterQuery (optional string): Query string to search logs (default: "*")
      • filterFrom (optional number): Search start time as UNIX timestamp in seconds (default: 15 minutes ago)
      • filterTo (optional number): Search end time as UNIX timestamp in seconds (default: current time)
      • pageLimit (optional number): Maximum number of logs to retrieve (default: 25, max: 1000)
      • pageCursor (optional string): Pagination cursor for retrieving additional results
    • Returns: Formatted text containing:
      • Search conditions (query and time range)
      • Number of logs found
      • Next page cursor (if available)
      • Log details including:
        • Service name
        • Tags
        • Timestamp
        • Status
        • Message (truncated to 300 characters)
        • Host
        • Important attributes (http.method, http.url, http.status_code, error)
  2. search_spans
    • Search for trace spans in Datadog
    • Inputs:
      • filterQuery (optional string): Query string to search spans (default: "*")
      • filterFrom (optional number): Search start time as UNIX timestamp in seconds (default: 15 minutes ago)
      • filterTo (optional number): Search end time as UNIX timestamp in seconds (default: current time)
      • pageLimit (optional number): Maximum number of spans to retrieve (default: 25, max: 1000)
      • pageCursor (optional string): Pagination cursor for retrieving additional results
    • Returns: Formatted text containing:
      • Search conditions (query and time range)
      • Number of spans found
      • Next page cursor (if available)
      • Span details including:
        • Service name
        • Timestamp
        • Resource name
        • Duration (in seconds)
        • Host
        • Environment
        • Type
        • Important attributes (http.method, http.url, http.status_code, error)
  3. aggregate_spans
    • Aggregate trace spans in Datadog by specified dimensions
    • Inputs:
      • filterQuery (optional string): Query string to filter spans for aggregation (default: "*")
      • filterFrom (optional number): Start time as UNIX timestamp in seconds (default: 15 minutes ago)
      • filterTo (optional number): End time as UNIX timestamp in seconds (default: current time)
      • groupBy (optional string[]): Dimensions to group by (e.g., ["service", "resource_name", "status"])
      • aggregation (optional string): Aggregation method - "count", "avg", "sum", "min", "max", "pct" (default: "count")
      • interval (optional string): Time interval for time series data (only when type is "timeseries")
      • type (optional string): Result type, either "timeseries" or "total" (default: "timeseries")
    • Returns: Formatted text containing:
      • Aggregation results in buckets, each including:
        • Bucket ID
        • Group by values (if groupBy is specified)
        • Computed values based on the aggregation method
      • Additional metadata:
        • Processing time (elapsed)
        • Request ID
        • Status
        • Warnings (if any)

Setup

You need to set up Datadog API and application keys:

  1. Get your API key and application key from the Datadog API Keys page
  2. Install dependencies in the datadog-mcp project:
    npm install # or pnpm install
  3. Build the TypeScript project:
    npm run build # or pnpm run build

Docker Setup

You can build using Docker with the following command:

docker build -t datadog-mcp .

Usage with Claude Desktop

To use this with Claude Desktop, add the following to your claude_desktop_config.json:

{ "mcpServers": { "datadog": { "command": "node", "args": [ "/path/to/datadog-mcp/build/index.js" ], "env": { "DD_API_KEY": "<YOUR_DATADOG_API_KEY>", "DD_APP_KEY": "<YOUR_DATADOG_APP_KEY>" } } } }

If you're using Docker, you can configure it like this:

{ "mcpServers": { "datadog": { "command": "docker", "args": [ "run", "-i", "--rm", "-e", "DD_API_KEY", "-e", "DD_APP_KEY", "datadog-mcp" ], "env": { "DD_API_KEY": "<YOUR_DATADOG_API_KEY>", "DD_APP_KEY": "<YOUR_DATADOG_APP_KEY>" } } } }

Usage with VS Code

For quick installation in VS Code, configure your settings:

  1. Open User Settings (JSON) in VS Code (Ctrl+Shift+PPreferences: Open User Settings (JSON))
  2. Add the following configuration:
{ "mcp": { "servers": { "datadog": { "command": "node", "args": [ "/path/to/datadog-mcp/build/index.js" ], "env": { "DD_API_KEY": "<YOUR_DATADOG_API_KEY>", "DD_APP_KEY": "<YOUR_DATADOG_APP_KEY>" } } } } }

If you're using Docker, you can configure it like this:

{ "mcp": { "servers": { "datadog": { "command": "docker", "args": [ "run", "-i", "--rm", "-e", "DD_API_KEY", "-e", "DD_APP_KEY", "datadog-mcp" ], "env": { "DD_API_KEY": "<YOUR_DATADOG_API_KEY>", "DD_APP_KEY": "<YOUR_DATADOG_APP_KEY>" } } } } }

Alternatively, you can add this to a .vscode/mcp.json file in your workspace (without the mcp key):

{ "servers": { "datadog": { "command": "node", "args": [ "/path/to/datadog-mcp/build/index.js" ], "env": { "DD_API_KEY": "<YOUR_DATADOG_API_KEY>", "DD_APP_KEY": "<YOUR_DATADOG_APP_KEY>" } } } }

If you're using Docker, you can configure it like this:

{ "servers": { "datadog": { "command": "docker", "args": [ "run", "-i", "--rm", "-e", "DD_API_KEY", "-e", "DD_APP_KEY", "datadog-mcp" ], "env": { "DD_API_KEY": "<YOUR_DATADOG_API_KEY>", "DD_APP_KEY": "<YOUR_DATADOG_APP_KEY>" } } } }

You must be authenticated.

A
security – no known vulnerabilities
A
license - permissive license
A
quality - confirmed to work

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

Enables interaction with Datadog's monitoring platform to search logs, search trace spans, and perform trace span aggregation for analysis.

  1. Features
    1. Tools
      1. Setup
        1. Docker Setup
        2. Usage with Claude Desktop
        3. Usage with VS Code

      Related MCP Servers

      • -
        security
        F
        license
        -
        quality
        provide access to monitor and cluster logs from datadog
        Last updated -
        2
        Python
        • Apple
      • -
        security
        F
        license
        -
        quality
        Integrates with Sumo Logic's API to enable log search with configurable queries and time ranges, supporting error handling and easy deployment via Docker.
        Last updated -
        TypeScript
      • A
        security
        A
        license
        A
        quality
        The MCP server provides an interface to the Datadog API, enabling seamless management of incidents, monitoring, logs, dashboards, metrics, traces, and hosts. Its extensible design allows easy integration of additional Datadog APIs for future expansions.
        Last updated -
        14
        322
        36
        TypeScript
        Apache 2.0
        • Apple

      View all related MCP servers

      ID: 3vjdswnx7u