Skip to main content
Glama

Datadog MCP Server

by Nozomuts

Datadog MCP Server

English (This Document) | 日本語

MCP Server for Datadog API, enabling log search, trace span search, and trace span aggregation functionalities.

Features

  • Log Search: Search and retrieve logs from Datadog with flexible query options

  • Trace Span Search: Search for distributed trace spans with various filtering options

  • Trace Span Aggregation: Aggregate trace spans by different dimensions for analysis

Related MCP server: datadog

Tools

  1. search_logs

    • Search for logs in Datadog

    • Inputs:

      • filterQuery (optional string): Query string to search logs (default: "*")

      • filterFrom (optional number): Search start time as UNIX timestamp in seconds (default: 15 minutes ago)

      • filterTo (optional number): Search end time as UNIX timestamp in seconds (default: current time)

      • pageLimit (optional number): Maximum number of logs to retrieve (default: 25, max: 1000)

      • pageCursor (optional string): Pagination cursor for retrieving additional results

    • Returns: Formatted text containing:

      • Search conditions (query and time range)

      • Number of logs found

      • Next page cursor (if available)

      • Log details including:

        • Service name

        • Tags

        • Timestamp

        • Status

        • Message (truncated to 300 characters)

        • Host

        • Important attributes (http.method, http.url, http.status_code, error)

  2. search_spans

    • Search for trace spans in Datadog

    • Inputs:

      • filterQuery (optional string): Query string to search spans (default: "*")

      • filterFrom (optional number): Search start time as UNIX timestamp in seconds (default: 15 minutes ago)

      • filterTo (optional number): Search end time as UNIX timestamp in seconds (default: current time)

      • pageLimit (optional number): Maximum number of spans to retrieve (default: 25, max: 1000)

      • pageCursor (optional string): Pagination cursor for retrieving additional results

    • Returns: Formatted text containing:

      • Search conditions (query and time range)

      • Number of spans found

      • Next page cursor (if available)

      • Span details including:

        • Service name

        • Timestamp

        • Resource name

        • Duration (in seconds)

        • Host

        • Environment

        • Type

        • Important attributes (http.method, http.url, http.status_code, error)

  3. aggregate_spans

    • Aggregate trace spans in Datadog by specified dimensions

    • Inputs:

      • filterQuery (optional string): Query string to filter spans for aggregation (default: "*")

      • filterFrom (optional number): Start time as UNIX timestamp in seconds (default: 15 minutes ago)

      • filterTo (optional number): End time as UNIX timestamp in seconds (default: current time)

      • groupBy (optional string[]): Dimensions to group by (e.g., ["service", "resource_name", "status"])

      • aggregation (optional string): Aggregation method - "count", "avg", "sum", "min", "max", "pct" (default: "count")

      • interval (optional string): Time interval for time series data (only when type is "timeseries")

      • type (optional string): Result type, either "timeseries" or "total" (default: "timeseries")

    • Returns: Formatted text containing:

      • Aggregation results in buckets, each including:

        • Bucket ID

        • Group by values (if groupBy is specified)

        • Computed values based on the aggregation method

      • Additional metadata:

        • Processing time (elapsed)

        • Request ID

        • Status

        • Warnings (if any)

Setup

You need to set up Datadog API and application keys:

  1. Get your API key and application key from the Datadog API Keys page

  2. Install dependencies in the datadog-mcp project:

    npm install # or pnpm install
  3. Build the TypeScript project:

    npm run build # or pnpm run build

Docker Setup

You can build using Docker with the following command:

docker build -t datadog-mcp .

Usage with Claude Desktop

To use this with Claude Desktop, add the following to your claude_desktop_config.json:

{ "mcpServers": { "datadog": { "command": "node", "args": [ "/path/to/datadog-mcp/build/index.js" ], "env": { "DD_API_KEY": "<YOUR_DATADOG_API_KEY>", "DD_APP_KEY": "<YOUR_DATADOG_APP_KEY>" } } } }

If you're using Docker, you can configure it like this:

{ "mcpServers": { "datadog": { "command": "docker", "args": [ "run", "-i", "--rm", "-e", "DD_API_KEY", "-e", "DD_APP_KEY", "datadog-mcp" ], "env": { "DD_API_KEY": "<YOUR_DATADOG_API_KEY>", "DD_APP_KEY": "<YOUR_DATADOG_APP_KEY>" } } } }

Usage with VS Code

For quick installation in VS Code, configure your settings:

  1. Open User Settings (JSON) in VS Code (Ctrl+Shift+PPreferences: Open User Settings (JSON))

  2. Add the following configuration:

{ "mcp": { "servers": { "datadog": { "command": "node", "args": [ "/path/to/datadog-mcp/build/index.js" ], "env": { "DD_API_KEY": "<YOUR_DATADOG_API_KEY>", "DD_APP_KEY": "<YOUR_DATADOG_APP_KEY>" } } } } }

If you're using Docker, you can configure it like this:

{ "mcp": { "servers": { "datadog": { "command": "docker", "args": [ "run", "-i", "--rm", "-e", "DD_API_KEY", "-e", "DD_APP_KEY", "datadog-mcp" ], "env": { "DD_API_KEY": "<YOUR_DATADOG_API_KEY>", "DD_APP_KEY": "<YOUR_DATADOG_APP_KEY>" } } } } }

Alternatively, you can add this to a .vscode/mcp.json file in your workspace (without the mcp key):

{ "servers": { "datadog": { "command": "node", "args": [ "/path/to/datadog-mcp/build/index.js" ], "env": { "DD_API_KEY": "<YOUR_DATADOG_API_KEY>", "DD_APP_KEY": "<YOUR_DATADOG_APP_KEY>" } } } }

If you're using Docker, you can configure it like this:

{ "servers": { "datadog": { "command": "docker", "args": [ "run", "-i", "--rm", "-e", "DD_API_KEY", "-e", "DD_APP_KEY", "datadog-mcp" ], "env": { "DD_API_KEY": "<YOUR_DATADOG_API_KEY>", "DD_APP_KEY": "<YOUR_DATADOG_APP_KEY>" } } } }
Deploy Server
A
security – no known vulnerabilities
A
license - permissive license
A
quality - confirmed to work

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nozomuts/datadog-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server