# Mnehmos Screen Vision Knowledge Base
Knowledge base for the screen.vision Tauri desktop conversion project. Contains project reviews, architecture decisions, and development notes.
## Quick Start
```bash
npm install
npm run build
npm start
```
## Index Stats
| Metric | Count |
|--------|-------|
| Sources | 1 |
| Chunks | 9 |
| Vectors | 9 |
| Embedding Model | openai/text-embedding-3-small |
## Environment Variables
| Variable | Required | Description |
|----------|----------|-------------|
| `PORT` | No | HTTP server port (default: 8765) |
| `OPENAI_API_KEY` | For /chat | OpenAI API key for chat endpoint |
| `OPENAI_MODEL` | No | Model for chat (default: gpt-5-nano-2025-08-07) |
## Deploy to Railway
1. Push to GitHub
2. Connect repo to Railway
3. Add `OPENAI_API_KEY` environment variable (for /chat)
4. Deploy
## HTTP Endpoints
### Health Check
```bash
curl https://your-app.railway.app/health
```
### Search
```bash
curl -X POST https://your-app.railway.app/search \
-H "Content-Type: application/json" \
-d '{"query": "your search query", "mode": "keyword", "top_k": 10}'
```
### Chat (RAG + LLM)
```bash
curl -X POST https://your-app.railway.app/chat \
-H "Content-Type: application/json" \
-d '{"question": "What is...?"}'
```
### List Sources
```bash
curl https://your-app.railway.app/sources
```
## MCP Integration
Add to your MCP client config:
```json
{
"mcpServers": {
"mnehmos-screen-vision": {
"command": "node",
"args": ["path/to/dist/index.js"]
}
}
}
```
---
*Generated by IndexFoundry*