Skip to main content
Glama

Dingo MCP Server

by MigoXLab
sdk_image_relevant.py1.04 kB
from dingo.config import InputArgs from dingo.exec import Executor def image_relevant(): input_data = { "input_path": "../../test/data/test_img_jsonl.jsonl", "output_path": "output/hallucination_evaluation/", "dataset": { "source": "local", "format": "jsonl", "field": { "id": "id", "prompt": "url_1", "content": "url_2" } }, "executor": { "prompt_list": ["PromptImageRelevant"], "result_save": { "bad": True, "good": True } }, "evaluator": { "llm_config": { "VLMImageRelevant": { "key": "", "api_url": "", } } } } input_args = InputArgs(**input_data) executor = Executor.exec_map["local"](input_args) result = executor.execute() print(result) if __name__ == '__main__': image_relevant()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/MigoXLab/dingo'

If you have feedback or need assistance with the MCP directory API, please join our Discord server