Skip to main content
Glama

Dingo MCP Server

by MigoXLab
dataman.py1.04 kB
from dingo.config import InputArgs from dingo.exec import Executor if __name__ == '__main__': input_data = { "input_path": "../../test/data/test_dataman_jsonl.jsonl", "dataset": { "source": "local", "format": "jsonl", "field": { "content": "content" } }, "executor": { "prompt_list": ["PromptDataManAssessment"], "batch_size": 10, "max_workers": 10, "result_save": { "bad": True, "good": True } }, "evaluator": { "llm_config": { "LLMDatamanAssessment": { "key": "enter your key, such as:EMPTY", "api_url": "enter your local llm api url, such as:http://127.0.0.1:8080/v1", } } } } input_args = InputArgs(**input_data) executor = Executor.exec_map["local"](input_args) result = executor.execute() print(result)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/MigoXLab/dingo'

If you have feedback or need assistance with the MCP directory API, please join our Discord server