Skip to main content
Glama

Dingo MCP Server

by MigoXLab
continue.py1.42 kB
from dingo.config import InputArgs from dingo.exec import Executor def exec_first(): input_data = { "input_path": "../../test/data/test_local_jsonl.jsonl", "dataset": { "source": "local", "format": "jsonl", "field": { "id": "id", "content": "content" } }, "executor": { "eval_group": "sft", "end_index": 1, "result_save": { "bad": True, "good": True } } } input_args = InputArgs(**input_data) executor = Executor.exec_map["local"](input_args) result = executor.execute() print(result) def exec_second(): input_data = { "input_path": "../../test/data/test_local_jsonl.jsonl", "dataset": { "source": "local", "format": "jsonl", "field": { "id": "id", "content": "content" } }, "executor": { "eval_group": "sft", "start_index": 1, "result_save": { "bad": True, "good": True } } } input_args = InputArgs(**input_data) executor = Executor.exec_map["local"](input_args) result = executor.execute() print(result) if __name__ == '__main__': exec_first() exec_second()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/MigoXLab/dingo'

If you have feedback or need assistance with the MCP directory API, please join our Discord server