Skip to main content
Glama

Dingo MCP Server

by MigoXLab
test_local.py3.59 kB
import pytest from dingo.config import InputArgs from dingo.exec import Executor, LocalExecutor from dingo.io import ResultInfo class TestLocal: def test_merge_result_info(self): existing_list = [] new_item1 = ResultInfo( data_id = "1", prompt = "", content = "�I am 8 years old. ^I love apple because:", error_status = True, type_list = ["QUALITY_BAD_EFFECTIVENESS"], name_list = ["QUALITY_BAD_EFFECTIVENESS-RuleColonEnd"], reason_list = ["�I am 8 years old. ^I love apple because:"], raw_data = {} ) new_item2 = ResultInfo( data_id = "1", prompt = "", content = "�I am 8 years old. ^I love apple because:", error_status = True, type_list = ["QUALITY_BAD_EFFECTIVENESS"], name_list = ["QUALITY_BAD_EFFECTIVENESS-PromptContentChaos"], reason_list = ["文本中包含不可见字符或乱码(如�和^),可能影响阅读理解。"], raw_data = {} ) localexecutor = LocalExecutor({}) new_existing_list = localexecutor.merge_result_info(existing_list, new_item1) assert new_existing_list[0] == new_item1 new_existing_list = localexecutor.merge_result_info(existing_list, new_item1) new_existing_list = localexecutor.merge_result_info(new_existing_list, new_item2) assert len(new_existing_list) == 1 assert len(new_existing_list[0].type_list) == 1 assert len(new_existing_list[0].name_list) == 2 assert len(new_existing_list[0].reason_list) == 2 assert "QUALITY_BAD_EFFECTIVENESS" in new_existing_list[0].type_list assert "QUALITY_BAD_EFFECTIVENESS-RuleColonEnd" in new_existing_list[0].name_list assert "QUALITY_BAD_EFFECTIVENESS-PromptContentChaos" in new_existing_list[0].name_list assert "�I am 8 years old. ^I love apple because:" in new_existing_list[0].reason_list assert "文本中包含不可见字符或乱码(如�和^),可能影响阅读理解。" in new_existing_list[0].reason_list def test_all_labels_config(self): input_data = { "input_path": "test/data//test_local_jsonl.jsonl", "dataset": { "source": "local", "format": "jsonl", "field": { "content": "content" } }, "executor": { "rule_list": ["RuleColonEnd", "RuleSpecialCharacter", "RuleDocRepeat"], "result_save": { "all_labels": True, }, "end_index": 1 } } input_args = InputArgs(**input_data) executor = Executor.exec_map["local"](input_args) result = executor.execute() assert all([item in result.name_ratio for item in ["QUALITY_BAD_EFFECTIVENESS-RuleColonEnd", "QUALITY_BAD_EFFECTIVENESS-RuleSpecialCharacter", "QUALITY_GOOD-Data"]]) input_data["executor"]["result_save"]["all_labels"] = False input_args = InputArgs(**input_data) executor = Executor.exec_map["local"](input_args) result = executor.execute() assert all([item in result.name_ratio for item in ["QUALITY_BAD_EFFECTIVENESS-RuleColonEnd", "QUALITY_BAD_EFFECTIVENESS-RuleSpecialCharacter"]])

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/MigoXLab/dingo'

If you have feedback or need assistance with the MCP directory API, please join our Discord server