Skip to main content
Glama

Dingo MCP Server

by MigoXLab
html_extract_compare_v2_example_dataset.py3.6 kB
""" HTML 提取工具对比评估 - Dataset 批量执行示例 这个示例展示了如何使用 Executor 批量评估 JSONL 数据集中的 HTML 提取工具对比任务。 特点: 1. 支持从 JSONL 文件批量读取数据 2. 使用 LLMHtmlExtractCompareV2 进行评估 3. 自动生成评估报告 4. 支持保存好样本和坏样本 数据格式要求: { "data_id": "唯一标识", "content": "工具A提取的文本", "magic_md": "工具B提取的文本", "language": "zh" 或 "en" } 使用方法: python examples/compare/dataset_html_extract_compare_evaluation.py """ import os from pathlib import Path from dingo.config.input_args import InputArgs from dingo.exec.base import Executor # API 配置 OPENAI_MODEL = 'deepseek-chat' OPENAI_URL = os.getenv("OPENAI_BASE_URL") OPENAI_KEY = os.getenv("OPENAI_API_KEY") def evaluate_html_extract_compare_dataset(): """ 批量评估 HTML 提取工具对比数据集 数据集格式: {"data_id": "001", "content": "工具A文本", "magic_md": "工具B文本", "language": "zh"} """ print("=== HTML Extract Compare Dataset Evaluation ===") print(f"使用模型: {OPENAI_MODEL}") print(f"API URL: {OPENAI_URL}") print() # 配置参数 input_data = { "task_name": "html_extract_compare_v2_evaluation", "input_path": str(Path("test/data/html_extract_compare_test.jsonl")), "output_path": "output/html_extract_compare_evaluation/", # "log_level": "INFO", # 数据集配置 "dataset": { "source": "local", # 本地数据源 "format": "jsonl", # JSONL 格式 "field": { "id": "data_id", # data_id 字段映射 "prompt": "content", # prompt 字段映射 "content": "magic_md", # content 字段映射 # language 会自动放入 raw_data } }, # 执行器配置 "executor": { "eval_group": "html_extract_compare", # 使用 html_extract_compare 评估组 "max_workers": 4, # 并发数 "batch_size": 1, # 批次大小 "result_save": { "bad": True, # 保存工具B更好的样本(error_status=True) "good": True # 保存工具A更好或相同的样本 } }, # 评估器配置 "evaluator": { "llm_config": { "LLMHtmlExtractCompareV2": { "model": OPENAI_MODEL, "key": OPENAI_KEY, "api_url": OPENAI_URL, } } } } # 创建 InputArgs 并执行 input_args = InputArgs(**input_data) executor = Executor.exec_map["local"](input_args) print("开始执行评估...") result = executor.execute() # 打印结果 print("\n" + "=" * 60) print("评估完成!") print("=" * 60) print(f"任务名称: {result.task_name}") print(f"评估组: {result.eval_group}") print(f"总样本数: {result.total}") print(f"工具B更好的样本数: {result.num_bad} ") print(f"工具A更好或相同: {result.num_good} ") print(f"\n输出路径: {result.output_path}") # 打印详细统计 if hasattr(result, 'type_count') and result.type_count: print("\n详细统计:") for eval_type, count in result.type_count.items(): print(f" - {eval_type}: {count}") print("=" * 60) return result if __name__ == "__main__": evaluate_html_extract_compare_dataset()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/MigoXLab/dingo'

If you have feedback or need assistance with the MCP directory API, please join our Discord server