Skip to main content
Glama

Ultralytics MCP Server

setup.sh•3.33 kB
#!/bin/bash echo "šŸš€ RCT Detector Platform - Complete Setup" echo "=====================================" echo "" # Function to check if command exists command_exists() { command -v "$1" >/dev/null 2>&1 } # Check prerequisites echo "šŸ” Checking prerequisites..." if ! command_exists docker; then echo "āŒ Docker is not installed. Please install Docker first." exit 1 fi if ! command_exists docker-compose; then echo "āŒ Docker Compose is not installed. Please install Docker Compose first." exit 1 fi # Check if nvidia-docker is available (optional, for GPU support) if command_exists nvidia-smi; then echo "āœ… NVIDIA drivers detected" if docker run --rm --gpus all nvidia/cuda:11.0-base nvidia-smi >/dev/null 2>&1; then echo "āœ… NVIDIA Docker runtime is working" else echo "āš ļø NVIDIA Docker runtime might not be properly configured" echo " GPU acceleration may not be available" fi else echo "āš ļø NVIDIA drivers not detected. Running in CPU mode." fi echo "" echo "šŸ—ļø Building and starting containers..." echo "" # Stop any existing containers echo "šŸ›‘ Stopping existing containers..." docker-compose down # Build and start containers echo "šŸ”Ø Building containers (this may take several minutes)..." docker-compose build --no-cache echo "šŸš€ Starting containers..." docker-compose up -d # Wait for containers to be ready echo "" echo "ā³ Waiting for services to start..." sleep 15 # Check container status echo "" echo "šŸ“‹ Container Status:" docker-compose ps # Check if Streamlit is accessible echo "" echo "🌐 Checking service availability..." # Function to check if a port is accessible check_port() { local port=$1 local service=$2 local max_attempts=30 local attempt=1 while [ $attempt -le $max_attempts ]; do if curl -s "http://localhost:$port" >/dev/null 2>&1; then echo "āœ… $service is accessible on port $port" return 0 fi echo "ā³ Waiting for $service (attempt $attempt/$max_attempts)..." sleep 2 attempt=$((attempt + 1)) done echo "āŒ $service is not accessible on port $port after $max_attempts attempts" return 1 } check_port 8501 "Streamlit" check_port 6006 "TensorBoard" check_port 8092 "MCP Server" echo "" echo "šŸŽ‰ Setup Complete!" echo "==================" echo "" echo "šŸ“± Available Services:" echo " 🌐 Streamlit Web Interface: http://localhost:8501" echo " šŸ“Š TensorBoard: http://localhost:6006" echo " šŸ”Œ MCP Server: http://localhost:8092" echo " šŸ““ Jupyter (optional): http://localhost:8888" echo "" echo "šŸ”§ Management Commands:" echo " šŸ“Š View logs: docker-compose logs -f ultralytics-container" echo " šŸ”„ Restart: docker-compose restart" echo " šŸ›‘ Stop: docker-compose down" echo " šŸ’¾ Monitor: docker exec ultralytics-container /usr/local/bin/monitor.sh" echo "" echo "šŸ“š Features Available:" echo " āœ… 10GB ZIP dataset upload limit" echo " āœ… Intelligent dataset structure detection" echo " āœ… Background processing for large files" echo " āœ… Real-time GPU monitoring" echo " āœ… Custom model training" echo " āœ… MCP integration for N8N automation" echo "" echo "šŸš€ Ready to use! Navigate to http://localhost:8501 to get started."

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/MetehanYasar11/ultralytics_mcp_server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server