docker-compose-new.ymlā¢1.99 kB
services:
# RCT Detector Platform - Main Application
rct-detector:
build:
context: .
dockerfile: Dockerfile.ultralytics
container_name: rct-detector-platform
volumes:
# Workspace for trained models
- trained_models:/workspace/trained_models
# Built-in datasets (mount your datasets folder here)
- ../datasets:/ultralytics/YOLO_MultiLevel_Datasets:ro
# Custom datasets volume
- custom_datasets:/ultralytics/custom_datasets
environment:
- NVIDIA_VISIBLE_DEVICES=all
- NVIDIA_DRIVER_CAPABILITIES=compute,utility
- CUDA_VISIBLE_DEVICES=0
runtime: nvidia
gpus: all
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: all
capabilities: [gpu]
ports:
- "8501:8501" # Streamlit Web Interface
- "8888:8888" # Jupyter (optional)
command: >
bash -c "
mkdir -p /workspace/trained_models &&
mkdir -p /ultralytics/custom_datasets &&
cd /ultralytics &&
streamlit run main_dashboard.py --server.address 0.0.0.0 --server.port 8501 --server.headless true --server.enableCORS false --server.enableXsrfProtection false --server.maxUploadSize 10000
"
stdin_open: true
tty: true
shm_size: '8gb'
ulimits:
memlock: -1
stack: 67108864
networks:
- rct-network
restart: unless-stopped
# MCP Server for N8N Integration (Optional)
mcp-server:
build:
context: .
dockerfile: Dockerfile.mcp-connector
container_name: rct-mcp-server
ports:
- "8092:8092" # MCP Server endpoint
environment:
- NODE_ENV=production
- ULTRALYTICS_CONTAINER=rct-detector-platform
networks:
- rct-network
restart: unless-stopped
depends_on:
- rct-detector
volumes:
trained_models:
driver: local
custom_datasets:
driver: local
networks:
rct-network:
driver: bridge