Skip to main content
Glama

Ultralytics MCP Server

docker-compose-new.yml1.94 kB
services: # DENTEX AI Platform - Main Application dentex-ai: build: context: . dockerfile: Dockerfile.ultralytics container_name: dentex-ai-platform volumes: # Workspace for trained models - trained_models:/workspace/trained_models # DENTEX dataset (mount your DENTEX folder here) - ../DENTEX:/DENTEX:ro # Custom datasets volume - custom_datasets:/ultralytics/custom_datasets environment: - NVIDIA_VISIBLE_DEVICES=all - NVIDIA_DRIVER_CAPABILITIES=compute,utility - CUDA_VISIBLE_DEVICES=0 runtime: nvidia gpus: all deploy: resources: reservations: devices: - driver: nvidia count: all capabilities: [gpu] ports: - "8501:8501" # Streamlit Web Interface - "8888:8888" # Jupyter (optional) command: > bash -c " mkdir -p /workspace/trained_models && mkdir -p /ultralytics/custom_datasets && cd /ultralytics && streamlit run main_dashboard.py --server.address 0.0.0.0 --server.port 8501 --server.headless true --server.enableCORS false --server.enableXsrfProtection false --server.maxUploadSize 200 " stdin_open: true tty: true shm_size: '8gb' ulimits: memlock: -1 stack: 67108864 networks: - dentex-network restart: unless-stopped # MCP Server for N8N Integration (Optional) mcp-server: build: context: . dockerfile: Dockerfile.mcp-connector container_name: dentex-mcp-server ports: - "8092:8092" # MCP Server endpoint environment: - NODE_ENV=production - ULTRALYTICS_CONTAINER=dentex-ai-platform networks: - dentex-network restart: unless-stopped depends_on: - dentex-ai volumes: trained_models: driver: local custom_datasets: driver: local networks: dentex-network: driver: bridge

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/MetehanYasar11/ultralytics_mcp_server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server