Skip to main content
Glama

Ultralytics MCP Server

PLATFORM_GUIDE.md2.95 kB
# 🚀 Unified AI Development Platform ## 📊 Service Overview Bu platform tek komutla tüm AI geliştirme ihtiyaçlarınızı karşılar: ### 🌐 Web Interfaces | Service | Port | URL | Description | |---------|------|-----|-------------| | **Streamlit UI** | 8501 | http://localhost:8501 | Ana AI Arayüzü (YOLO, Custom Models) | | **OpenWebUI** | 8080 | http://localhost:8080 | AI Chat Interface (LLM Integration) | | **Jupyter Lab** | 8888 | http://localhost:8888 | Development Environment | | **TensorBoard** | 6006 | http://localhost:6006 | Training Metrics & Visualization | | **Custom Apps** | 8502 | http://localhost:8502 | Geliştirmeleriniz için | ### 🔗 API Endpoints | Service | Port | URL | Description | |---------|------|-----|-------------| | **MCP Server** | 8092 | http://localhost:8092 | N8N Integration (7 AI Tools) | | **Redis Cache** | 6379 | localhost:6379 | Caching & Sessions | ## 🚀 Quick Start ### Tek Komut - Tüm Servisler ```bash docker-compose up -d ``` ### Logları İzle ```bash docker-compose logs -f ``` ### Servisleri Durdur ```bash docker-compose down ``` ## 📁 Project Structure ``` ├── ultralytics/ # Ana AI kodları ├── workspace/ # Model training workspace ├── dev/ # Geliştirmeleriniz ├── datasets/ # Custom datasets ├── openwebui_data/ # OpenWebUI data ├── openwebui_docs/ # OpenWebUI documents └── src/ # MCP Server (N8N entegrasyonu) ``` ## 🛠️ Development Workflow ### 1. Arayüz Geliştirme - **Klasör**: `./dev/` - **Port**: 8502 (Custom Streamlit apps) - Real-time editing desteklenir ### 2. OpenWebUI Geliştirme - **Interface**: http://localhost:8080 - **Data**: `./openwebui_data/` - **Docs**: `./openwebui_docs/` ### 3. N8N Yetenekleri - **MCP Endpoint**: http://localhost:8092/sse - **Tools**: 7 AI tools available - **Health**: http://localhost:8092/health ## 🎯 Available AI Tools (MCP) 1. `execute_python_code` - Python execution 2. `yolo_operation` - YOLO operations 3. `list_training_results` - Browse results 4. `analyze_training_results` - Training metrics 5. `view_tensorboard` - TensorBoard access 6. `launch_streamlit_interface` - UI launcher 7. `get_system_info` - System overview ## 💡 Usage Examples ### Development Mode ```bash # Start all services docker-compose up -d # Access your interfaces # - Streamlit: http://localhost:8501 # - OpenWebUI: http://localhost:8080 # - Jupyter: http://localhost:8888 ``` ### N8N Integration ```javascript // N8N MCP Node Configuration { "endpoint": "http://localhost:8092/sse", "tools": ["execute_python_code", "yolo_operation"] } ``` ## 🔧 Customization - **Custom Streamlit Apps**: Place in `./dev/` folder - **Datasets**: Add to `./datasets/` folder - **OpenWebUI Docs**: Add to `./openwebui_docs/` folder --- **🎯 Tek komutla başlayın: `docker-compose up -d`**

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/MetehanYasar11/ultralytics_mcp_server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server