Skip to main content
Glama

Formula One MCP Server (Python)

f1_data.py19.7 kB
""" Formula One Data Processing Module. This module provides functions for accessing and processing Formula One racing data through the FastF1 API. It includes functionality for retrieving event schedules, session results, driver information, telemetry data, and championship standings. All functions follow a consistent pattern of returning structured JSON- compatible responses with appropriate error handling. """ # Standard library imports import logging import os import tempfile from datetime import datetime from typing import Any # Third-party imports import fastf1 import numpy as np import pandas as pd # Configure logging logger = logging.getLogger(__name__) # Configure FastF1 cache with proper path security and isolation # Use a temporary directory to avoid permission issues and provide isolation CACHE_DIR = os.path.join(tempfile.gettempdir(), "f1-cache") os.makedirs(CACHE_DIR, exist_ok=True) # Apply proper permissions to the cache directory try: os.chmod(CACHE_DIR, 0o700) # Restrict to current user except Exception as e: logger.warning(f"Failed to set permissions on cache directory: {str(e)}") fastf1.Cache.enable_cache(CACHE_DIR) # Set a maximum limit for data size to prevent excessive memory usage MAX_TELEMETRY_POINTS = 5000 def json_serial(obj: Any) -> str | int | float | None: """ Convert non-JSON serializable objects to strings. Args: obj: Object to be serialized to JSON Returns: JSON serializable representation of the object """ if isinstance(obj, datetime | pd.Timestamp): return obj.isoformat() if isinstance(obj, np.integer): return int(obj) if isinstance(obj, np.floating): return float(obj) if pd.isna(obj) or obj is None: return None return str(obj) def validate_year(year: Any) -> int: """ Validate that the provided year is valid for F1 data. Args: year: Year value to validate Returns: Valid year as integer Raises: ValueError: If year is invalid """ try: year_int = int(year) # F1 started in 1950 and we don't want future years far ahead current_year = datetime.now().year if year_int < 1950 or year_int > current_year + 1: raise ValueError(f"Year must be between 1950 and {current_year + 1}") return year_int except (ValueError, TypeError) as e: raise ValueError(f"Invalid year format: {year}") from e def get_event_schedule(year: Any) -> dict[str, Any]: """ Get the event schedule for a specified Formula One season. Args: year (int or str): The year of the F1 season Returns: dict: Status and schedule data or error information """ try: # Validate year year_int = validate_year(year) logger.debug(f"Fetching event schedule for {year_int}") schedule = fastf1.get_event_schedule(year_int) # Convert DataFrame to JSON serializable format result = [] for _, row in schedule.iterrows(): event_dict = row.to_dict() # Clean and convert non-serializable values clean_dict = {k: json_serial(v) for k, v in event_dict.items()} result.append(clean_dict) logger.info(f"Successfully retrieved {len(result)} events for {year_int}") return {"status": "success", "data": result} except Exception as e: logger.error(f"Error retrieving event schedule: {str(e)}", exc_info=True) return { "status": "error", "message": f"Failed to retrieve event schedule: {str(e)}", } def get_event_info(year: Any, identifier: str) -> dict[str, Any]: """ Get information about a specific Formula One event. Args: year (int or str): The year of the F1 season identifier (str): Event name or round number Returns: dict: Status and event data or error information """ try: # Validate year year_int = validate_year(year) # Validate identifier if not identifier or not isinstance(identifier, str | int): raise ValueError("Invalid event identifier") logger.debug(f"Fetching event info for {year_int}, event: {identifier}") # Identifier can be event name or round number if str(identifier).isdigit(): event = fastf1.get_event(year_int, int(identifier)) else: event = fastf1.get_event(year_int, str(identifier)) # Convert Series to dict and clean non-serializable values event_dict = event.to_dict() clean_dict = {k: json_serial(v) for k, v in event_dict.items()} logger.info( f"Successfully retrieved event info for {year_int}, event: {identifier}" ) return {"status": "success", "data": clean_dict} except Exception as e: logger.error(f"Error retrieving event info: {str(e)}", exc_info=True) return { "status": "error", "message": f"Failed to retrieve event information: {str(e)}", } def get_session_results( year: Any, event_identifier: str, session_name: str ) -> dict[str, Any]: """ Get results for a specific Formula One session. Args: year (int or str): The year of the F1 season event_identifier (str): Event name or round number session_name (str): Session type (Race, Qualifying, Sprint, etc.) Returns: dict: Status and session results data or error information """ try: # Validate year year_int = validate_year(year) # Validate session name valid_sessions = [ "Race", "Qualifying", "Sprint", "FP1", "FP2", "FP3", "SprintQualifying", ] if session_name not in valid_sessions: raise ValueError( f"Invalid session name. Must be one of: {', '.join(valid_sessions)}" ) logger.debug( f"Fetching session results for {year_int}, " f"event: {event_identifier}, session: {session_name}" ) session = fastf1.get_session(year_int, event_identifier, session_name) # Load session without telemetry for faster results session.load(telemetry=False) # Get results as a DataFrame results = session.results # Convert results to JSON serializable format result_list = [] for _, result in results.items(): driver_result = result.to_dict() # Clean and convert non-serializable values clean_dict = {k: json_serial(v) for k, v in driver_result.items()} result_list.append(clean_dict) logger.info( f"Successfully retrieved results for {year_int}, " f"event: {event_identifier}, session: {session_name}" ) return {"status": "success", "data": result_list} except Exception as e: logger.error(f"Error retrieving session results: {str(e)}", exc_info=True) return { "status": "error", "message": f"Failed to retrieve session results: {str(e)}", } def get_driver_info( year: Any, event_identifier: str, session_name: str, driver_identifier: str ) -> dict[str, Any]: """ Get information about a specific Formula One driver. Args: year (int or str): The year of the F1 season event_identifier (str): Event name or round number session_name (str): Session type (Race, Qualifying, Sprint, etc.) driver_identifier (str): Driver number, code, or name Returns: dict: Status and driver information or error information """ try: # Validate year year_int = validate_year(year) logger.debug( f"Fetching driver info for {year_int}, " f"event: {event_identifier}, session: {session_name}, " f"driver: {driver_identifier}" ) session = fastf1.get_session(year_int, event_identifier, session_name) # Load session without telemetry for faster results session.load(telemetry=False) driver_info = session.get_driver(driver_identifier) # Convert to JSON serializable format driver_dict = driver_info.to_dict() clean_dict = {k: json_serial(v) for k, v in driver_dict.items()} logger.info(f"Successfully retrieved driver info for {driver_identifier}") return {"status": "success", "data": clean_dict} except Exception as e: logger.error(f"Error retrieving driver info: {str(e)}", exc_info=True) return { "status": "error", "message": f"Failed to retrieve driver information: {str(e)}", } def analyze_driver_performance( year: Any, event_identifier: str, session_name: str, driver_identifier: str ) -> dict[str, Any]: """ Analyze a driver's performance in a Formula One session. Args: year (int or str): The year of the F1 season event_identifier (str): Event name or round number session_name (str): Session type (Race, Qualifying, Sprint, etc.) driver_identifier (str): Driver number, code, or name Returns: dict: Status and performance analysis or error information """ try: # Validate year year_int = validate_year(year) logger.debug( f"Analyzing driver performance for {year_int}, " f"event: {event_identifier}, session: {session_name}, " f"driver: {driver_identifier}" ) session = fastf1.get_session(year_int, event_identifier, session_name) session.load() # Get laps for the specified driver driver_laps = session.laps.pick_driver(driver_identifier) if len(driver_laps) == 0: return { "status": "error", "message": f"No laps found for driver {driver_identifier}", } # Basic statistics fastest_lap = driver_laps.pick_fastest() # Calculate average lap time (excluding outliers) valid_lap_times = [] for _, lap in driver_laps.iterrows(): if lap["LapTime"] is not None and not pd.isna(lap["LapTime"]): valid_lap_times.append(lap["LapTime"].total_seconds()) avg_lap_time = ( sum(valid_lap_times) / len(valid_lap_times) if valid_lap_times else None ) # Format lap time as minutes:seconds.milliseconds formatted_fastest = ( str(fastest_lap["LapTime"]) if fastest_lap is not None and not pd.isna(fastest_lap["LapTime"]) else None ) # Get all lap times - limit to avoid excessive data max_laps = min(len(driver_laps), 100) # Safety limit lap_times = [] for _, lap in driver_laps.iloc[:max_laps].iterrows(): lap_dict = { "LapNumber": int(lap["LapNumber"]) if not pd.isna(lap["LapNumber"]) else None, "LapTime": str(lap["LapTime"]) if not pd.isna(lap["LapTime"]) else None, "Compound": lap["Compound"] if not pd.isna(lap["Compound"]) else None, "TyreLife": int(lap["TyreLife"]) if not pd.isna(lap["TyreLife"]) else None, "Stint": int(lap["Stint"]) if not pd.isna(lap["Stint"]) else None, "FreshTyre": bool(lap["FreshTyre"]) if not pd.isna(lap["FreshTyre"]) else None, "LapStartTime": json_serial(lap["LapStartTime"]) if not pd.isna(lap["LapStartTime"]) else None, } lap_times.append(lap_dict) # Format results result = { "DriverCode": fastest_lap["Driver"] if fastest_lap is not None and not pd.isna(fastest_lap["Driver"]) else None, "TotalLaps": len(driver_laps), "FastestLap": formatted_fastest, "AverageLapTime": avg_lap_time, "LapTimes": lap_times, } logger.info(f"Successfully analyzed performance for driver {driver_identifier}") return {"status": "success", "data": result} except Exception as e: return {"status": "error", "message": str(e)} def compare_drivers(year, event_identifier, session_name, drivers): """ Compare performance between multiple Formula One drivers. Args: year (int or str): The year of the F1 season event_identifier (str): Event name or round number session_name (str): Session type (Race, Qualifying, Sprint, etc.) drivers (str): Comma-separated list of driver codes Returns: dict: Status and driver comparison data or error information """ try: year = int(year) drivers_list = drivers.split(",") session = fastf1.get_session(year, event_identifier, session_name) session.load() driver_comparisons = [] for driver in drivers_list: # Get laps and fastest lap for each driver driver_laps = session.laps.pick_driver(driver) fastest_lap = driver_laps.pick_fastest() # Calculate average lap time valid_lap_times = [] for _, lap in driver_laps.iterrows(): if lap["LapTime"] is not None and not pd.isna(lap["LapTime"]): valid_lap_times.append(lap["LapTime"].total_seconds()) avg_lap_time = ( sum(valid_lap_times) / len(valid_lap_times) if valid_lap_times else None ) # Format lap time as string formatted_fastest = None fastest_lap_number = None if fastest_lap is not None: formatted_fastest = ( str(fastest_lap["LapTime"]) if not pd.isna(fastest_lap["LapTime"]) else None ) fastest_lap_number = ( int(fastest_lap["LapNumber"]) if not pd.isna(fastest_lap["LapNumber"]) else None ) # Compile driver data driver_data = { "DriverCode": driver, "FastestLap": formatted_fastest, "FastestLapNumber": fastest_lap_number, "TotalLaps": len(driver_laps), "AverageLapTime": avg_lap_time, } driver_comparisons.append(driver_data) return {"status": "success", "data": driver_comparisons} except Exception as e: return {"status": "error", "message": str(e)} def get_telemetry( year, event_identifier, session_name, driver_identifier, lap_number=None ): """ Get telemetry data for a specific lap or fastest lap. Args: year (int or str): The year of the F1 season event_identifier (str): Event name or round number session_name (str): Session type (Race, Qualifying, Sprint, etc.) driver_identifier (str): Driver number, code, or name lap_number (int, optional): Specific lap number or None for fastest lap Returns: dict: Status and telemetry data or error information """ try: year = int(year) session = fastf1.get_session(year, event_identifier, session_name) session.load() # Get laps for the specified driver driver_laps = session.laps.pick_driver(driver_identifier) if len(driver_laps) == 0: return { "status": "error", "message": f"No laps found for driver {driver_identifier}", } # Get the specific lap or fastest lap if lap_number: matching_laps = driver_laps[driver_laps["LapNumber"] == int(lap_number)] if len(matching_laps) == 0: return { "status": "error", "message": ( f"Lap number {lap_number} not found for driver " f"{driver_identifier}" ), } lap = matching_laps.iloc[0] else: lap = driver_laps.pick_fastest() if lap is None: return { "status": "error", "message": "No valid fastest lap found for driver " f"{driver_identifier}", } # Get telemetry data telemetry = lap.get_telemetry() # Convert to JSON serializable format telemetry_dict = telemetry.to_dict(orient="records") clean_data = [] for item in telemetry_dict: clean_item = {k: json_serial(v) for k, v in item.items()} clean_data.append(clean_item) # Add lap information lap_info = { "LapNumber": int(lap["LapNumber"]) if not pd.isna(lap["LapNumber"]) else None, "LapTime": str(lap["LapTime"]) if not pd.isna(lap["LapTime"]) else None, "Compound": lap["Compound"] if not pd.isna(lap["Compound"]) else None, "TyreLife": int(lap["TyreLife"]) if not pd.isna(lap["TyreLife"]) else None, } result = {"lapInfo": lap_info, "telemetry": clean_data} return {"status": "success", "data": result} except Exception as e: return {"status": "error", "message": str(e)} def get_championship_standings(year, round_num=None): """ Get championship standings for drivers and constructors. Args: year (int or str): The year of the F1 season round_num (int, optional): Specific round number or None for latest Returns: dict: Status and championship standings or error information """ try: year = int(year) # Create Ergast API client ergast = fastf1.ergast.Ergast() # Get Ergast API data if round_num: round_num = int(round_num) # Ensure proper type conversion drivers_standings = ergast.get_driver_standings( season=year, round=round_num ).content[0] constructor_standings = ergast.get_constructor_standings( season=year, round=round_num ).content[0] else: drivers_standings = ergast.get_driver_standings(season=year).content[0] constructor_standings = ergast.get_constructor_standings( season=year ).content[0] # Convert driver standings to JSON serializable format drivers_list = [] for _, row in drivers_standings.iterrows(): driver_dict = row.to_dict() clean_dict = {k: json_serial(v) for k, v in driver_dict.items()} drivers_list.append(clean_dict) # Convert constructor standings to JSON serializable format constructors_list = [] for _, row in constructor_standings.iterrows(): constructor_dict = row.to_dict() clean_dict = {k: json_serial(v) for k, v in constructor_dict.items()} constructors_list.append(clean_dict) return { "status": "success", "data": { "drivers": drivers_list, "constructors": constructors_list, }, } except Exception as e: logger.error(f"Error analyzing driver performance: {str(e)}", exc_info=True) return { "status": "error", "message": f"Failed to analyze driver performance: {str(e)}", }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Machine-To-Machine/f1-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server