Skip to main content
Glama

Claude Code Multi-Process MCP Server

by L-x-C

Claude Code Multi-Process MCP Server

A FastMCP-based multi-process execution server for Claude Code that provides asynchronous task processing capabilities.

Features

  • Asynchronous Execution - Start background tasks and continue working immediately

  • Multi-Instance Parallelism - Run multiple Claude Code sessions simultaneously

  • Automatic Cleanup - Prevent zombie processes with automatic resource reclamation

  • Process Monitoring - Real-time task status and process information tracking

  • Task Management - Complete task lifecycle management

Quick Start

1. Install Dependencies

⚠️ Important: Due to macOS externally-managed-environment restrictions, you must use a virtual environment.

# Clone and navigate to project cd <project-path> # Create virtual environment python3 -m venv venv # Activate virtual environment and install dependencies source venv/bin/activate pip install -r requirements.txt # Deactivate when done (optional) deactivate

2. Configure Claude Code

Add to your ~/.claude/settings.json:

{ "mcpServers": { "cc-multi-process": { "command": "/absolute/path/to/project/venv/bin/python3", "args": ["/absolute/path/to/project/main.py"], "description": "Claude Code Multi-Process MCP Server - Provides parallel task execution capabilities" } } }

Critical Notes:

  • Use virtual environment Python path: /your/project/path/venv/bin/python3

  • Use absolute paths for both command and args

  • Replace /absolute/path/to/project with your actual project path

  • The virtual environment must contain the FastMCP dependencies

Example Configuration:

{ "mcpServers": { "cc-multi-process": { "command": "/Users/username/git/cc-multi-process-mcp/venv/bin/python3", "args": ["/Users/username/git/cc-multi-process-mcp/main.py"], "description": "Claude Code Multi-Process MCP Server - Provides parallel task execution capabilities" } } }

3. Restart Claude Code

Reload or restart Claude Code to load the MCP server. The server should appear in your available tools.

API Reference

execute_cc_task

Execute Claude Code task synchronously, blocks until completion.

Parameters:

  • prompt (required): Task description

  • working_dir (optional): Working directory

  • model (optional): "sonnet", "opus", or "haiku"

  • skip_permissions (optional): Skip permission checks (default: true)

  • timeout (optional): Timeout in seconds

Returns: JSON string containing execution results

start_cc_task_async

Start Claude Code task asynchronously, returns task ID immediately.

Parameters:

  • prompt (required): Task description

  • working_dir (optional): Working directory

  • model (optional): "sonnet", "opus", or "haiku"

  • skip_permissions (optional): Skip permission checks (default: true)

  • timeout (optional): Timeout in seconds

Returns: Task ID string

check_task_status

Check asynchronous task status.

Parameters:

  • task_id (required): Task ID

Returns: JSON string containing task status and results

list_active_tasks

List all currently active tasks.

Returns: JSON string containing active task list

cleanup_task

Clean up specified task and its related data.

Parameters:

  • task_id (required): Task ID to clean up

Returns: JSON string containing cleanup results

Usage Examples

Asynchronous Execution Example (Recommended)

# Start a long-running background task task_id = start_cc_task_async( prompt="Analyze all Python files and generate a comprehensive report", working_dir="/path/to/project", model="sonnet", skip_permissions=True ) # ✅ Returns immediately with Task ID: abc12345 # Continue your work while Claude Code runs in background # ... do other things ... # Check result when ready result = check_task_status(task_id)

Parallel Execution Example

# Start multiple tasks simultaneously task1 = start_cc_task_async( prompt="Generate unit tests for utils.py" ) task2 = start_cc_task_async( prompt="Refactor database.py to use async/await" ) task3 = start_cc_task_async( prompt="Add type hints to all functions in api.py" ) # All three tasks run in parallel # Check results when ready result1 = check_task_status(task1) result2 = check_task_status(task2) result3 = check_task_status(task3)

Synchronous Execution Example

For simple tasks that need immediate results:

result = execute_cc_task( prompt="Write a Python function to validate email addresses", skip_permissions=True ) # ⏳ Blocks until completion, then returns result

Task Management Example

# List all active tasks active_tasks = list_active_tasks() # Clean up specific task cleanup_result = cleanup_task("task_id_here") # Check task status status = check_task_status("task_id_here")

Technical Implementation

Architecture

Framework: FastMCP + JSON-RPC over stdio Language: Python 3.6+ Storage: Filesystem-based task persistence (/tmp/cc_process_tasks/) Process Management: SIGCHLD signal handler prevents zombie processes Logging: Detailed logging to /tmp/cc_process_mcp.log

Core Components

  • TaskManager Class - Manages task lifecycle and processes

  • Asynchronous Process Management - Uses subprocess.Popen to create non-blocking child processes

  • Signal Handling - Automatic resource cleanup and zombie process reclamation

  • Filesystem State - Task result persistent storage

Design Decisions

  1. FastMCP-Based - Uses modern MCP framework instead of raw JSON-RPC implementation

  2. Filesystem Persistence - Task state stored in files, supports server restart

  3. Automatic Process Cleanup - Unix signal handling prevents resource leaks

  4. Comprehensive Logging - Complete execution logs for debugging and monitoring

  5. Task Isolation - Each task uses separate directory and process

Troubleshooting

Installation Issues

"externally-managed-environment" error?

  • This is expected on macOS. You must use a virtual environment:

python3 -m venv venv source venv/bin/activate pip install -r requirements.txt

Dependencies not found?

  • Ensure virtual environment is activated before installing

  • Verify FastMCP installation: pip list | grep fastmcp

  • Recreate virtual environment if needed: rm -rf venv && python3 -m venv venv

Server Connection Issues

Server not showing up in Claude Code?

  • Verify virtual environment Python path in configuration

  • Check that absolute paths are used for both command and args

  • Ensure virtual environment exists: ls -la venv/bin/python3

  • Test server manually: ./venv/bin/python3 main.py

  • Restart Claude Code after configuration changes

ModuleNotFoundError: No module named 'fastmcp'?

  • MCP server is using system Python instead of virtual environment

  • Update configuration to use /path/to/project/venv/bin/python3

  • Ensure dependencies were installed in the virtual environment

Task Execution Issues

Task stuck in "running" status?

  • Wait a moment, large tasks take time

  • Check task directory: ls -la /tmp/cc_process_tasks/

  • View logs: tail -f /tmp/cc_process_mcp.log

  • Verify Claude Code CLI is accessible: which claude

Processes not cleaning up properly?

  • Use cleanup_task tool for manual cleanup

  • Check system processes: ps aux | grep claude

  • Restart server to force cleanup of all resources

Permission Issues

Permission denied errors?

  • Ensure virtual environment has proper permissions: chmod +x venv/bin/python3

  • Check that main.py is executable: chmod +x main.py

  • Verify write permissions to /tmp/ directory

System Requirements

  • Python 3.6+ with virtual environment support

  • Claude Code CLI installed and accessible via PATH

  • Unix/Linux/macOS (supports signal handling)

  • Virtual Environment (required on modern macOS due to PEP 668)

  • Write permissions to /tmp/ directory for task storage

License

MIT License

-
security - not tested
F
license - not found
-
quality - not tested

local-only server

The server can only run on the client's local machine because it depends on local resources.

Enables asynchronous and parallel execution of Claude Code tasks across multiple sessions, allowing users to start background tasks and continue working immediately without blocking.

  1. Features
    1. Quick Start
      1. 1. Install Dependencies
      2. 2. Configure Claude Code
      3. 3. Restart Claude Code
    2. API Reference
      1. execute_cc_task
      2. start_cc_task_async
      3. check_task_status
      4. list_active_tasks
      5. cleanup_task
    3. Usage Examples
      1. Asynchronous Execution Example (Recommended)
      2. Parallel Execution Example
      3. Synchronous Execution Example
      4. Task Management Example
    4. Technical Implementation
      1. Architecture
      2. Core Components
      3. Design Decisions
    5. Troubleshooting
      1. Installation Issues
      2. Server Connection Issues
      3. Task Execution Issues
      4. Permission Issues
    6. System Requirements
      1. License

        MCP directory API

        We provide all the information about MCP servers via our MCP API.

        curl -X GET 'https://glama.ai/api/mcp/v1/servers/L-x-C/cc-multi-process-mcp'

        If you have feedback or need assistance with the MCP directory API, please join our Discord server