README.md•8.59 kB
# Memory MCP
[](https://archestra.ai/mcp-catalog/jamesanz__memory-mcp)
A Model Context Protocol (MCP) server for logging and retrieving memories from LLM conversations with intelligent context window caching capabilities.
## Features
- **Save Memories**: Store memories from LLM conversations with timestamps and LLM identification
- **Retrieve Memories**: Get all stored memories with detailed metadata
- **Add Memories**: Append new memories without overwriting existing ones
- **Clear Memories**: Remove all stored memories
- **Context Window Caching**: Archive, retrieve, and summarize conversation context
- **Relevance Scoring**: Automatically score archived content relevance to current context
- **Tag-based Search**: Categorize and search context by tags
- **Conversation Orchestration**: External system to manage context window caching
- **MongoDB Storage**: Persistent storage using MongoDB database
## Installation
1. Install dependencies:
```bash
npm install
```
2. Build the project:
```bash
npm run build
```
## Configuration
Set the MongoDB connection string via environment variable:
```bash
export MONGODB_URI="mongodb://localhost:27017"
```
Default: `mongodb://localhost:27017`
## Usage
### Running the MCP Server
Start the MCP server:
```bash
npm start
```
### Running the Conversation Orchestrator Demo
Try the interactive CLI demo:
```bash
npm run cli
```
The CLI demo allows you to:
- Add messages to simulate conversation
- See automatic archiving when context gets full
- Trigger manual archiving and retrieval
- Create summaries of archived content
- Monitor conversation status and get recommendations
### Basic Memory Tools
1. **save-memories**: Save all memories to the database, overwriting existing ones
- `memories`: Array of memory strings to save
- `llm`: Name of the LLM (e.g., 'chatgpt', 'claude')
- `userId`: Optional user identifier
2. **get-memories**: Retrieve all memories from the database
- No parameters required
3. **add-memories**: Add new memories to the database without overwriting existing ones
- `memories`: Array of memory strings to add
- `llm`: Name of the LLM (e.g., 'chatgpt', 'claude')
- `userId`: Optional user identifier
4. **clear-memories**: Clear all memories from the database
- No parameters required
### Context Window Caching Tools
5. **archive-context**: Archive context messages for a conversation with tags and metadata
- `conversationId`: Unique identifier for the conversation
- `contextMessages`: Array of context messages to archive
- `tags`: Tags for categorizing the archived content
- `llm`: Name of the LLM (e.g., 'chatgpt', 'claude')
- `userId`: Optional user identifier
6. **retrieve-context**: Retrieve relevant archived context for a conversation
- `conversationId`: Unique identifier for the conversation
- `tags`: Optional tags to filter by
- `minRelevanceScore`: Minimum relevance score (0-1, default: 0.1)
- `limit`: Maximum number of items to return (default: 10)
7. **score-relevance**: Score the relevance of archived context against current conversation context
- `conversationId`: Unique identifier for the conversation
- `currentContext`: Current conversation context to compare against
- `llm`: Name of the LLM (e.g., 'chatgpt', 'claude')
8. **create-summary**: Create a summary of context items and link them to the summary
- `conversationId`: Unique identifier for the conversation
- `contextItems`: Context items to summarize
- `summaryText`: Human-provided summary text
- `llm`: Name of the LLM (e.g., 'chatgpt', 'claude')
- `userId`: Optional user identifier
9. **get-conversation-summaries**: Get all summaries for a specific conversation
- `conversationId`: Unique identifier for the conversation
10. **search-context-by-tags**: Search archived context and summaries by tags
- `tags`: Tags to search for
### Example Usage in LLM
#### Basic Memory Operations
1. **Save all memories** (overwrites existing):
```
User: "Save all my memories from this conversation to the MCP server"
LLM: [Uses save-memories tool with current conversation memories]
```
2. **Retrieve all memories**:
```
User: "Get all my memories from the MCP server"
LLM: [Uses get-memories tool to retrieve stored memories]
```
#### Context Window Caching Workflow
1. **Archive context when window gets full**:
```
User: "The conversation is getting long, archive the early parts"
LLM: [Uses archive-context tool to store old messages with tags]
```
2. **Score relevance of archived content**:
```
User: "How relevant is the archived content to our current discussion?"
LLM: [Uses score-relevance tool to evaluate archived content]
```
3. **Retrieve relevant archived context**:
```
User: "Bring back the relevant archived information"
LLM: [Uses retrieve-context tool to get relevant archived content]
```
4. **Create summaries for long conversations**:
```
User: "Summarize the early parts of our conversation"
LLM: [Uses create-summary tool to condense archived content]
```
## Conversation Orchestration System
The `ConversationOrchestrator` class provides automatic context window management:
### Key Features
- **Automatic Archiving**: Archives content when context usage reaches 80%
- **Intelligent Retrieval**: Retrieves relevant content when usage drops below 30%
- **Relevance Scoring**: Uses keyword overlap to score archived content relevance
- **Smart Tagging**: Automatically generates tags based on content keywords
- **Conversation State Management**: Tracks active conversations and their context
- **Recommendations**: Provides suggestions for optimal context management
### Usage Example
```typescript
import { ConversationOrchestrator } from "./orchestrator.js";
const orchestrator = new ConversationOrchestrator(8000); // 8k word limit
// Add a message (triggers automatic archiving/retrieval)
const result = await orchestrator.addMessage(
"conversation-123",
"This is a new message in the conversation",
"claude",
);
// Check if archiving is needed
if (result.archiveDecision?.shouldArchive) {
await orchestrator.executeArchive(result.archiveDecision, result.state);
}
// Check if retrieval is needed
if (result.retrievalDecision?.shouldRetrieve) {
await orchestrator.executeRetrieval(result.retrievalDecision, result.state);
}
```
## Database Schema
### Basic Memory Structure
```typescript
type BasicMemory = {
_id: ObjectId;
memories: string[]; // Array of memory strings
timestamp: Date; // When memories were saved
llm: string; // LLM identifier (e.g., 'chatgpt', 'claude')
userId?: string; // Optional user identifier
};
```
### Extended Memory Structure (Context Caching)
```typescript
type ExtendedMemory = {
_id: ObjectId;
memories: string[]; // Array of memory strings
timestamp: Date; // When memories were saved
llm: string; // LLM identifier
userId?: string; // Optional user identifier
conversationId?: string; // Unique conversation identifier
contextType?: "active" | "archived" | "summary";
relevanceScore?: number; // 0-1 relevance score
tags?: string[]; // Categorization tags
parentContextId?: ObjectId; // Reference to original content for summaries
messageIndex?: number; // Order within conversation
wordCount?: number; // Size tracking
summaryText?: string; // Condensed version
};
```
## Context Window Caching Workflow
The orchestration system automatically:
1. **Monitors conversation length** and context usage
2. **Archives content** when context usage reaches 80%
3. **Scores relevance** of archived content against current context
4. **Retrieves relevant content** when usage drops below 30%
5. **Creates summaries** to condense very long conversations
### Key Features
- **Conversation Grouping**: All archived content is linked to specific conversation IDs
- **Relevance Scoring**: Simple keyword overlap scoring (can be enhanced with semantic similarity)
- **Tag-based Organization**: Categorize content for easy retrieval
- **Summary Linking**: Preserve links between summaries and original content
- **Backward Compatibility**: All existing memory functions work unchanged
- **Automatic Management**: No manual intervention required for basic operations
## Development
To run in development mode:
```bash
npm run build
node build/index.js
```
To run the CLI demo:
```bash
npm run cli
```
## License
ISC