Provides persistent storage of conversation memories using MongoDB database with support for saving, retrieving, adding, and clearing memory records.
š§ Memory MCP Server
Persistent memory and context window caching for LLM conversations. Save, retrieve, and manage memories with intelligent context archiving. MongoDB-backed storage.
An MCP (Model Context Protocol) server that provides memory management and context window caching for AI coding environments like Cursor and Claude Desktop.
Why Use Memory MCP?
š¾ Persistent Storage ā MongoDB-backed memory that survives sessions
š§ Context Caching ā Intelligent archiving and retrieval of conversation context
š·ļø Tag-based Search ā Organize and find memories by tags
š Relevance Scoring ā Automatically score archived content relevance
ā” Easy Setup ā One-click install in Cursor or simple manual setup
Related MCP server: MongoDB MCP Server for LLMs
Quick Start
Ready to add memory to your AI workflow? Install in seconds:
Install in Cursor (Recommended):
Or install manually:
Features
Basic Memory Tools
save-memoriesā Save memories to database (overwrites existing)get-memoriesā Retrieve all stored memoriesadd-memoriesā Append new memories without overwritingclear-memoriesā Remove all stored memories
Context Window Caching
archive-contextā Archive conversation context with tagsretrieve-contextā Retrieve relevant archived contextscore-relevanceā Score archived content relevancecreate-summaryā Create summaries of archived contentget-conversation-summariesā Get all summaries for a conversationsearch-context-by-tagsā Search archived content by tags
Installation
Cursor (One-Click)
Click the install link above or use:
Manual Installation
Requirements: Node.js 18+, npm, MongoDB
Claude Desktop
Add to claude_desktop_config.json:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
Restart Claude Desktop after configuration.
Configuration
Set the MongoDB connection string:
Default: mongodb://localhost:27017
Usage Examples
Save Memories
Store memories from a conversation:
Retrieve Memories
Get all stored memories:
Archive Context
Archive conversation context when it gets too long:
Retrieve Relevant Context
Get archived content relevant to current conversation:
Context Window Caching
The system automatically:
Archives content when context usage reaches 80%
Retrieves relevant content when usage drops below 30%
Scores relevance using keyword overlap
Creates summaries to condense long conversations
Use Cases
Long Conversations ā Manage context windows for extended sessions
Memory Persistence ā Save important information across sessions
Context Retrieval ā Bring back relevant past conversations
Research Projects ā Organize and tag research conversations
Technical Details
Built with: Node.js, TypeScript, MCP SDK, MongoDB
Dependencies: @modelcontextprotocol/sdk, mongodb, zod
Platforms: macOS, Windows, Linux
Storage: MongoDB (default: mongodb://localhost:27017)
Contributing
ā If this project helps you, please star it on GitHub! ā
Contributions welcome! Please open an issue or submit a pull request.
License
ISC
Support
If you find this project useful, consider supporting it:
ā” Lightning Network
āæ Bitcoin: bc1ptzvr93pn959xq4et6sqzpfnkk2args22ewv5u2th4ps7hshfaqrshe0xtp
Ī Ethereum/EVM: 0x42ea529282DDE0AA87B42d9E83316eb23FE62c3f