example-usage.md•4.54 kB
# Cross-LLM MCP Server Usage Examples
This document provides examples of how to use the Cross-LLM MCP Server with different MCP clients.
## Configuration
### 1. Set up your environment file
Copy the example environment file and add your API keys:
```bash
cp env.example .env
```
Edit `.env` with your actual API keys:
```env
# OpenAI/ChatGPT API Key
OPENAI_API_KEY=sk-your-openai-key-here
# Anthropic/Claude API Key
ANTHROPIC_API_KEY=sk-ant-your-anthropic-key-here
# DeepSeek API Key
DEEPSEEK_API_KEY=sk-your-deepseek-key-here
# Default models (optional)
DEFAULT_CHATGPT_MODEL=gpt-4
DEFAULT_CLAUDE_MODEL=claude-3-sonnet-20240229
DEFAULT_DEEPSEEK_MODEL=deepseek-chat
```
### 2. Build the server
```bash
npm run build
```
## Usage with Different MCP Clients
### Claude Desktop
1. Open Claude Desktop
2. Go to Settings → Model Context Protocol
3. Add a new server with these settings:
- **Name**: Cross-LLM
- **Command**: `node`
- **Arguments**: `[path-to-your-project]/build/index.js`
- **Working Directory**: `[path-to-your-project]`
### Example Conversations
#### Single LLM Call
**User**: "Call ChatGPT to explain quantum computing"
**Claude**: I'll use the Cross-LLM MCP server to call ChatGPT for you.
```json
{
"tool": "call-chatgpt",
"arguments": {
"prompt": "Explain quantum computing in simple terms",
"temperature": 0.7,
"max_tokens": 500
}
}
```
#### Multi-LLM Comparison
**User**: "Get responses from all LLMs about the future of AI"
**Claude**: I'll call all available LLMs to get different perspectives.
```json
{
"tool": "call-all-llms",
"arguments": {
"prompt": "What do you think the future of artificial intelligence will look like in the next 10 years?",
"temperature": 0.8,
"max_tokens": 800
}
}
```
#### Specific Model Selection
**User**: "Ask Claude to write a poem about technology"
**Claude**: I'll call the Claude API specifically for this request.
```json
{
"tool": "call-claude",
"arguments": {
"prompt": "Write a short poem about the impact of technology on modern life",
"model": "claude-3-sonnet-20240229",
"temperature": 0.9,
"max_tokens": 300
}
}
```
## Advanced Usage
### Custom Model Selection
You can specify different models for each provider:
```json
{
"tool": "call-llm",
"arguments": {
"provider": "chatgpt",
"prompt": "Explain machine learning algorithms",
"model": "gpt-4-turbo",
"temperature": 0.5,
"max_tokens": 1000
}
}
```
### Temperature Control
Adjust creativity vs consistency:
- **Low temperature (0.1-0.3)**: More focused, consistent responses
- **Medium temperature (0.4-0.7)**: Balanced creativity and consistency
- **High temperature (0.8-1.0)**: More creative, varied responses
### Token Management
Control response length:
- **Short responses**: 100-300 tokens
- **Medium responses**: 500-800 tokens
- **Long responses**: 1000+ tokens
## Error Handling
The server provides clear error messages for common issues:
### Missing API Key
```
**ChatGPT Error:** OpenAI API key not configured
```
### Network Issues
```
**Claude Error:** Claude API error: Network timeout
```
### Rate Limiting
```
**DeepSeek Error:** DeepSeek API error: Rate limit exceeded
```
## Best Practices
1. **Start with individual calls** to test each LLM before using `call-all-llms`
2. **Use appropriate temperature** for your use case
3. **Monitor token usage** to manage costs
4. **Handle errors gracefully** - one LLM failure shouldn't stop your workflow
5. **Compare responses** to understand different model strengths
## Troubleshooting
### Server won't start
- Check that all dependencies are installed: `npm install`
- Verify the build was successful: `npm run build`
- Ensure the `.env` file exists and has valid API keys
### API errors
- Verify your API keys are correct and active
- Check your API usage limits and billing status
- Ensure you're using supported model names
### No responses
- Check that at least one API key is configured
- Verify network connectivity
- Look for error messages in the response
## Integration Examples
### With Claude Desktop
The server integrates seamlessly with Claude Desktop, allowing you to:
- Call other LLMs while chatting with Claude
- Compare responses from different models
- Use specialized models for specific tasks
### With Other MCP Clients
Any MCP-compatible client can use this server to:
- Access multiple LLM providers
- Get diverse perspectives on topics
- Build more robust AI applications