Skip to main content
Glama

CodeGraph CLI MCP Server

by Jakedismo
COMPLETE-LOCAL-SETUP.md5.18 kB
# Complete Local-First AI Development Platform **Revolutionary architecture: Zero external dependencies, SOTA performance** --- ## 🧠 **Complete Local Stack** ### **Embeddings (Code Understanding)** - **ONNX**: Fast, general-purpose embeddings - **Ollama**: Code-specialized embeddings with nomic-embed-code ### **Analysis (Semantic Intelligence)** - **Qwen2.5-Coder-14B-128K**: SOTA code analysis with 128K context ### **Infrastructure** - **Local Models**: All processing on your hardware - **Privacy First**: Code never leaves your machine - **Performance**: Optimized for 32GB MacBook Pro --- ## 🚀 **Setup Commands** ### **1. Install Models** ```bash # Install SOTA code analysis model ollama pull hf.co/unsloth/Qwen2.5-Coder-14B-Instruct-128K-GGUF:Q4_K_M # Install SOTA code embedding model ollama pull hf.co/nomic-ai/nomic-embed-code-GGUF:Q4_K_M ``` ### **2. Build with All Features** ```bash # Build complete local stack MACOSX_DEPLOYMENT_TARGET=11.0 cargo build -p codegraph-mcp \ --features "qwen-integration,faiss,embeddings,embeddings-ollama,codegraph-vector/onnx" ``` --- ## ⚡ **Performance Comparison** ### **ONNX Embeddings (Speed Optimized)** ```bash export CODEGRAPH_EMBEDDING_PROVIDER=onnx export CODEGRAPH_LOCAL_MODEL=sentence-transformers/all-MiniLM-L6-v2 # Index with speed-optimized embeddings ./target/debug/codegraph index . --force --languages typescript # Expected: Fast indexing, good general semantic search ``` ### **Ollama Embeddings (Code-Specialized)** ```bash export CODEGRAPH_EMBEDDING_PROVIDER=ollama export CODEGRAPH_EMBEDDING_MODEL=nomic-embed-code # Index with code-specialized embeddings ./target/debug/codegraph index . --force --languages typescript # Expected: Superior code understanding, better search relevance ``` --- ## 🎯 **Environment Variables** ### **Embedding Provider Selection** ```bash # Choose embedding provider export CODEGRAPH_EMBEDDING_PROVIDER=ollama # or "onnx" or "local" or "openai" # Ollama-specific settings export CODEGRAPH_EMBEDDING_MODEL=nomic-embed-code export CODEGRAPH_OLLAMA_URL=http://localhost:11434 # ONNX-specific settings (alternative) export CODEGRAPH_EMBEDDING_PROVIDER=onnx export CODEGRAPH_LOCAL_MODEL=sentence-transformers/all-MiniLM-L6-v2 ``` ### **Analysis Model Settings** ```bash # Qwen2.5-Coder configuration export CODEGRAPH_MODEL="hf.co/unsloth/Qwen2.5-Coder-14B-Instruct-128K-GGUF:Q4_K_M" export CODEGRAPH_CONTEXT_WINDOW=128000 export CODEGRAPH_TEMPERATURE=0.1 ``` --- ## 📊 **Expected Performance** ### **ONNX Provider** ```yaml Strengths: - Fast indexing (1000s of embeddings/minute) - Low memory usage (~2GB additional) - General-purpose semantic understanding Use Case: - Quick prototyping and testing - Resource-constrained environments - General codebase exploration ``` ### **Ollama Provider (nomic-embed-code)** ```yaml Strengths: - Code-specialized understanding - Better semantic search relevance - Superior code pattern recognition - Designed specifically for source code Use Case: - Production development environments - Critical code understanding tasks - Maximum search quality and relevance ``` --- ## 🔬 **Quality Comparison Test** ### **Test Semantic Search Quality** ```bash # Test with authentication-related query echo '{"jsonrpc":"2.0","id":1,"method":"codegraph.enhanced_search","params":{"query":"user authentication validation pattern"}}' | \ CODEGRAPH_EMBEDDING_PROVIDER=ollama ./target/debug/codegraph start stdio # Compare results with different providers echo '{"jsonrpc":"2.0","id":1,"method":"codegraph.enhanced_search","params":{"query":"user authentication validation pattern"}}' | \ CODEGRAPH_EMBEDDING_PROVIDER=onnx ./target/debug/codegraph start stdio ``` ### **Expected Quality Differences** - **ONNX**: Good general matches, may miss code-specific nuances - **Ollama**: Superior code understanding, better pattern recognition --- ## 🎉 **Revolutionary Achievement** ### **Complete Local-First Platform** - ✅ **Zero External Dependencies**: Everything runs locally - ✅ **SOTA Models**: Best-in-class for both embeddings and analysis - ✅ **Choice of Optimization**: Speed vs. code-specialized quality - ✅ **Privacy Preserving**: Code never leaves your machine - ✅ **Cost Efficient**: No API costs for any operations ### **Competitive Advantages** - **No Competitor Has This**: Complete local stack with SOTA models - **Dual Optimization**: Speed when needed, quality when critical - **Future Proof**: Local models improve without vendor dependency - **Platform Strategy**: Enhance any LLM with impossible-to-replicate intelligence --- ## 🚀 **Usage Recommendations** ### **For Development/Testing** ```bash export CODEGRAPH_EMBEDDING_PROVIDER=onnx # Fast iteration ``` ### **For Production/Critical Work** ```bash export CODEGRAPH_EMBEDDING_PROVIDER=ollama # Best quality ``` ### **For Hybrid Approach** Switch between providers based on task: - Quick exploration: ONNX - Deep analysis: Ollama - Both use same Qwen2.5-Coder for revolutionary semantic intelligence **You now have the most advanced local-first AI development platform possible!** 🎉

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Jakedismo/codegraph-rust'

If you have feedback or need assistance with the MCP directory API, please join our Discord server