CODEGRAPH_RAG_ARCHITECTURE.md•28 kB
# CodeGraph RAG Architecture for Code Intelligence
## Comprehensive RAG System Design and Integration Specifications
---
pdf-engine: lualatex
mainfont: "DejaVu Serif"
monofont: "DejaVu Sans Mono"
header-includes: |
\usepackage{fontspec}
\directlua{
luaotfload.add_fallback("emojifallback", {"NotoColorEmoji:mode=harf;"})
}
\setmainfont[
RawFeature={fallback=emojifallback}
]{DejaVu Serif}
---
### Document Version: 1.0
### Date: September 2025
### Status: Architecture Design
---
## Executive Summary
This document defines a comprehensive Retrieval-Augmented Generation (RAG) architecture for the CodeGraph high-performance code intelligence system. The design integrates multi-modal code understanding, optimized retrieval strategies, OpenAI API patterns, and context window optimization to deliver sub-50ms query responses for large-scale codebases.
### Key Architecture Principles
- **Multi-Modal Code Understanding**: Syntax + semantics analysis through Tree-sitter + embedding models
- **Hierarchical Retrieval**: Multi-level context retrieval with semantic ranking
- **Context-Aware Optimization**: Dynamic context window management for large codebases
- **Real-Time Performance**: Sub-50ms query latency with incremental updates
- **Scalable Integration**: OpenAI API patterns with fallback and load balancing
---
## 1. RAG System Overview
### 1.1 Core Architecture Components
```mermaid
graph TB
subgraph "Input Layer"
Q[Query Interface]
CP[Code Parser]
EM[Embedding Manager]
end
subgraph "Multi-Modal Analysis"
ST[Syntax Tree Parser]
SA[Semantic Analyzer]
CG[Code Graph Builder]
MM[Multi-Modal Embedder]
end
subgraph "Retrieval Engine"
VS[Vector Store]
GS[Graph Store]
HR[Hierarchical Retriever]
CR[Context Ranker]
end
subgraph "Context Optimization"
CW[Context Window Manager]
CF[Context Filter]
CC[Context Compressor]
end
subgraph "Generation Layer"
API[OpenAI API Manager]
LB[Load Balancer]
RC[Response Cache]
QO[Query Optimizer]
end
Q --> CP
CP --> ST
CP --> SA
ST --> CG
SA --> MM
CG --> VS
MM --> VS
VS --> HR
HR --> CR
CR --> CW
CW --> CF
CF --> CC
CC --> API
API --> LB
LB --> RC
```
### 1.2 Performance Targets
- **Query Latency**: <50ms for most queries
- **Indexing Speed**: <1s for incremental updates
- **Memory Efficiency**: <50MB binary with embedded models
- **Accuracy**: >95% relevant context retrieval
- **Scalability**: Support for 10M+ lines of code
---
## 2. Code Context Retrieval Strategies
### 2.1 Hierarchical Retrieval Architecture
```rust
// Core retrieval strategy interface
pub trait RetrievalStrategy {
type Context;
type Query;
async fn retrieve(&self, query: &Self::Query, limit: usize) -> Vec<Self::Context>;
fn rank_relevance(&self, contexts: &[Self::Context], query: &Self::Query) -> Vec<f32>;
}
// Multi-level retrieval implementation
pub struct HierarchicalRetriever {
syntax_retriever: SyntaxRetriever,
semantic_retriever: SemanticRetriever,
graph_retriever: GraphRetriever,
cache: RetrievalCache,
}
```
### 2.2 Retrieval Strategy Layers
#### Layer 1: Syntax-Based Retrieval
```rust
pub struct SyntaxRetriever {
tree_sitter_index: TreeSitterIndex,
ast_patterns: ASTPatternMatcher,
}
impl SyntaxRetriever {
// Fast syntax-based filtering
pub async fn filter_by_syntax(&self, query: &CodeQuery) -> Vec<SyntaxMatch> {
let patterns = self.ast_patterns.extract_patterns(query);
self.tree_sitter_index.search_patterns(&patterns).await
}
// Function signature matching
pub fn match_signatures(&self, signature: &FunctionSignature) -> Vec<CodeLocation> {
// Implementation for signature-based matching
}
}
```
#### Layer 2: Semantic Retrieval
```rust
pub struct SemanticRetriever {
embedding_store: VectorStore<CodeEmbedding>,
semantic_index: SemanticIndex,
}
impl SemanticRetriever {
// Dense vector similarity search
pub async fn semantic_search(&self, query: &str, k: usize) -> Vec<SemanticMatch> {
let query_embedding = self.embed_query(query).await;
self.embedding_store.similarity_search(query_embedding, k).await
}
// Code intent matching
pub async fn match_intent(&self, intent: &CodeIntent) -> Vec<IntentMatch> {
// Implementation for intent-based retrieval
}
}
```
#### Layer 3: Graph-Based Retrieval
```rust
pub struct GraphRetriever {
code_graph: CodeGraph,
dependency_index: DependencyIndex,
}
impl GraphRetriever {
// Control flow analysis
pub fn retrieve_control_flow(&self, node: &CodeNode) -> Vec<FlowPath> {
self.code_graph.analyze_control_flow(node)
}
// Dependency traversal
pub fn retrieve_dependencies(&self, symbol: &Symbol, depth: usize) -> Vec<Dependency> {
self.dependency_index.traverse_dependencies(symbol, depth)
}
}
```
### 2.3 Retrieval Fusion Strategy
```rust
pub struct RetrievalFusion {
strategies: Vec<Box<dyn RetrievalStrategy<Context=CodeContext, Query=CodeQuery>>>,
weights: Vec<f32>,
}
impl RetrievalFusion {
pub async fn fused_retrieve(&self, query: &CodeQuery, limit: usize) -> Vec<RankedContext> {
let mut all_results = Vec::new();
// Parallel retrieval from all strategies
let futures: Vec<_> = self.strategies.iter().enumerate()
.map(|(i, strategy)| {
let weight = self.weights[i];
async move {
let results = strategy.retrieve(query, limit).await;
let scores = strategy.rank_relevance(&results, query);
results.into_iter().zip(scores).map(|(ctx, score)| {
RankedContext { context: ctx, score: score * weight }
}).collect::<Vec<_>>()
}
}).collect();
let strategy_results = futures::future::join_all(futures).await;
// Merge and re-rank results
for results in strategy_results {
all_results.extend(results);
}
self.merge_and_rank(all_results, limit)
}
}
```
---
## 3. Multi-Modal Code Understanding System
### 3.1 Syntax + Semantics Integration
```rust
pub struct MultiModalCodeAnalyzer {
syntax_analyzer: TreeSitterAnalyzer,
semantic_analyzer: SemanticAnalyzer,
embedding_model: Box<dyn EmbeddingModel>,
fusion_layer: MultiModalFusion,
}
#[derive(Debug, Clone)]
pub struct CodeRepresentation {
// Syntax representation
ast: SyntaxTree,
tokens: Vec<Token>,
node_types: Vec<NodeType>,
// Semantic representation
symbols: Vec<Symbol>,
types: Vec<TypeInfo>,
relationships: Vec<Relationship>,
// Multi-modal embeddings
syntax_embedding: Vec<f32>,
semantic_embedding: Vec<f32>,
fused_embedding: Vec<f32>,
}
```
### 3.2 Tree-sitter Integration
```rust
pub struct TreeSitterAnalyzer {
parsers: HashMap<Language, Parser>,
query_cache: QueryCache,
}
impl TreeSitterAnalyzer {
pub fn analyze_syntax(&self, code: &str, language: Language) -> SyntaxAnalysis {
let parser = &self.parsers[&language];
let tree = parser.parse(code, None).unwrap();
SyntaxAnalysis {
ast: tree.root_node(),
functions: self.extract_functions(&tree),
classes: self.extract_classes(&tree),
imports: self.extract_imports(&tree),
comments: self.extract_comments(&tree),
complexity_metrics: self.calculate_complexity(&tree),
}
}
pub fn extract_code_patterns(&self, tree: &Tree) -> Vec<CodePattern> {
let mut patterns = Vec::new();
// Function patterns
patterns.extend(self.extract_function_patterns(tree));
// Class patterns
patterns.extend(self.extract_class_patterns(tree));
// Control flow patterns
patterns.extend(self.extract_control_flow_patterns(tree));
patterns
}
}
```
### 3.3 Semantic Analysis Layer
```rust
pub struct SemanticAnalyzer {
symbol_table: SymbolTable,
type_checker: TypeChecker,
dataflow_analyzer: DataFlowAnalyzer,
}
impl SemanticAnalyzer {
pub fn analyze_semantics(&self, syntax: &SyntaxAnalysis) -> SemanticAnalysis {
let symbols = self.symbol_table.resolve_symbols(&syntax.ast);
let types = self.type_checker.infer_types(&symbols);
let dataflow = self.dataflow_analyzer.analyze_flow(&symbols);
SemanticAnalysis {
symbols,
types,
dataflow,
call_graph: self.build_call_graph(&symbols),
variable_usage: self.analyze_variable_usage(&dataflow),
}
}
pub fn extract_semantic_features(&self, analysis: &SemanticAnalysis) -> Vec<SemanticFeature> {
let mut features = Vec::new();
// Function complexity features
features.extend(self.extract_complexity_features(analysis));
// Type usage features
features.extend(self.extract_type_features(analysis));
// Dependency features
features.extend(self.extract_dependency_features(analysis));
features
}
}
```
### 3.4 Multi-Modal Embedding Fusion
```rust
pub struct MultiModalFusion {
syntax_projector: nn::Linear,
semantic_projector: nn::Linear,
fusion_transformer: TransformerBlock,
output_projector: nn::Linear,
}
impl MultiModalFusion {
pub fn fuse_representations(
&self,
syntax_features: &[f32],
semantic_features: &[f32],
) -> Vec<f32> {
let syntax_proj = self.syntax_projector.forward(syntax_features);
let semantic_proj = self.semantic_projector.forward(semantic_features);
// Concatenate and transform
let combined = [syntax_proj, semantic_proj].concat();
let fused = self.fusion_transformer.forward(&combined);
self.output_projector.forward(&fused)
}
pub async fn generate_code_embedding(&self, code: &CodeRepresentation) -> Vec<f32> {
self.fuse_representations(
&code.syntax_embedding,
&code.semantic_embedding,
)
}
}
```
---
## 4. OpenAI API Integration Patterns
### 4.1 API Client Architecture
```rust
pub struct OpenAIClient {
client: reqwest::Client,
config: OpenAIConfig,
rate_limiter: RateLimiter,
retry_policy: RetryPolicy,
circuit_breaker: CircuitBreaker,
}
#[derive(Debug, Clone)]
pub struct OpenAIConfig {
api_key: String,
base_url: String,
model: String,
max_tokens: u32,
temperature: f32,
timeout: Duration,
}
```
### 4.2 Request Optimization Patterns
```rust
impl OpenAIClient {
pub async fn complete_code(&self, request: CodeCompletionRequest) -> Result<CodeCompletion, OpenAIError> {
// Apply circuit breaker
self.circuit_breaker.call(async {
// Rate limiting
self.rate_limiter.acquire().await?;
// Retry with exponential backoff
self.retry_policy.retry(|| async {
let optimized_request = self.optimize_request(&request).await?;
self.send_request(optimized_request).await
}).await
}).await
}
async fn optimize_request(&self, request: &CodeCompletionRequest) -> Result<OptimizedRequest, OpenAIError> {
let context = self.optimize_context(&request.context).await?;
let prompt = self.optimize_prompt(&request.prompt, &context).await?;
Ok(OptimizedRequest {
model: self.select_optimal_model(&request).await?,
prompt,
context,
parameters: self.optimize_parameters(&request).await?,
})
}
}
```
### 4.3 Load Balancing and Fallback
```rust
pub struct OpenAILoadBalancer {
primary_client: OpenAIClient,
fallback_clients: Vec<OpenAIClient>,
health_checker: HealthChecker,
metrics: LoadBalancerMetrics,
}
impl OpenAILoadBalancer {
pub async fn execute_request(&self, request: CodeCompletionRequest) -> Result<CodeCompletion, OpenAIError> {
// Try primary client first
if self.health_checker.is_healthy(&self.primary_client).await {
match self.primary_client.complete_code(request.clone()).await {
Ok(response) => {
self.metrics.record_success(&self.primary_client);
return Ok(response);
}
Err(e) if !e.is_retryable() => return Err(e),
Err(_) => {
self.metrics.record_failure(&self.primary_client);
}
}
}
// Fallback to backup clients
for client in &self.fallback_clients {
if self.health_checker.is_healthy(client).await {
match client.complete_code(request.clone()).await {
Ok(response) => {
self.metrics.record_success(client);
return Ok(response);
}
Err(e) if !e.is_retryable() => continue,
Err(_) => {
self.metrics.record_failure(client);
continue;
}
}
}
}
Err(OpenAIError::AllClientsUnavailable)
}
}
```
### 4.4 Response Streaming and Caching
```rust
pub struct StreamingOpenAIClient {
base_client: OpenAIClient,
cache: ResponseCache,
streaming_manager: StreamingManager,
}
impl StreamingOpenAIClient {
pub async fn stream_completion(
&self,
request: CodeCompletionRequest,
) -> Result<impl Stream<Item = CompletionChunk>, OpenAIError> {
// Check cache first
if let Some(cached) = self.cache.get(&request).await {
return Ok(self.streaming_manager.create_cached_stream(cached));
}
// Create streaming request
let stream = self.base_client.create_completion_stream(request.clone()).await?;
// Tee stream for caching
let (cached_stream, response_stream) = self.streaming_manager.tee_stream(stream);
// Cache responses asynchronously
tokio::spawn(async move {
let collected = self.streaming_manager.collect_stream(cached_stream).await;
self.cache.insert(request, collected).await;
});
Ok(response_stream)
}
}
```
---
## 5. Context Window Optimization for Large Codebases
### 5.1 Dynamic Context Management
```rust
pub struct ContextWindowManager {
max_context_size: usize,
context_analyzer: ContextAnalyzer,
compression_engine: ContextCompressor,
prioritizer: ContextPrioritizer,
}
impl ContextWindowManager {
pub async fn optimize_context(
&self,
raw_context: Vec<CodeContext>,
query: &CodeQuery,
) -> OptimizedContext {
// Analyze context relevance
let analyzed = self.context_analyzer.analyze_relevance(&raw_context, query).await;
// Prioritize context elements
let prioritized = self.prioritizer.prioritize_contexts(analyzed, query).await;
// Compress if necessary
let compressed = if self.estimate_token_count(&prioritized) > self.max_context_size {
self.compression_engine.compress_contexts(prioritized, self.max_context_size).await
} else {
prioritized
};
OptimizedContext {
contexts: compressed,
total_tokens: self.estimate_token_count(&compressed),
compression_ratio: self.calculate_compression_ratio(&raw_context, &compressed),
}
}
}
```
### 5.2 Intelligent Context Compression
```rust
pub struct ContextCompressor {
summarizer: CodeSummarizer,
relevance_ranker: RelevanceRanker,
semantic_compressor: SemanticCompressor,
}
#[derive(Debug, Clone)]
pub enum CompressionStrategy {
Truncate,
Summarize,
SemanticCompress,
HybridCompress,
}
impl ContextCompressor {
pub async fn compress_contexts(
&self,
contexts: Vec<RankedContext>,
max_tokens: usize,
) -> Vec<CompressedContext> {
let mut compressed = Vec::new();
let mut remaining_tokens = max_tokens;
for context in contexts {
let strategy = self.select_compression_strategy(&context, remaining_tokens);
let compressed_context = match strategy {
CompressionStrategy::Truncate => {
self.truncate_context(context, remaining_tokens).await
}
CompressionStrategy::Summarize => {
self.summarizer.summarize_context(context, remaining_tokens).await
}
CompressionStrategy::SemanticCompress => {
self.semantic_compressor.compress(context, remaining_tokens).await
}
CompressionStrategy::HybridCompress => {
self.hybrid_compress(context, remaining_tokens).await
}
};
remaining_tokens -= compressed_context.token_count;
compressed.push(compressed_context);
if remaining_tokens <= 0 {
break;
}
}
compressed
}
}
```
### 5.3 Context Prioritization Algorithm
```rust
pub struct ContextPrioritizer {
relevance_scorer: RelevanceScorer,
recency_scorer: RecencyScorer,
complexity_scorer: ComplexityScorer,
usage_scorer: UsageScorer,
}
#[derive(Debug, Clone)]
pub struct PriorityScore {
relevance: f32,
recency: f32,
complexity: f32,
usage_frequency: f32,
combined_score: f32,
}
impl ContextPrioritizer {
pub async fn prioritize_contexts(
&self,
contexts: Vec<AnalyzedContext>,
query: &CodeQuery,
) -> Vec<RankedContext> {
let mut scored_contexts = Vec::new();
for context in contexts {
let score = self.calculate_priority_score(&context, query).await;
scored_contexts.push(RankedContext {
context: context.context,
analysis: context.analysis,
priority_score: score,
});
}
// Sort by combined score
scored_contexts.sort_by(|a, b| {
b.priority_score.combined_score
.partial_cmp(&a.priority_score.combined_score)
.unwrap_or(std::cmp::Ordering::Equal)
});
scored_contexts
}
async fn calculate_priority_score(
&self,
context: &AnalyzedContext,
query: &CodeQuery,
) -> PriorityScore {
let relevance = self.relevance_scorer.score(context, query).await;
let recency = self.recency_scorer.score(context).await;
let complexity = self.complexity_scorer.score(context).await;
let usage = self.usage_scorer.score(context).await;
// Weighted combination
let combined = (relevance * 0.4) + (recency * 0.2) + (complexity * 0.2) + (usage * 0.2);
PriorityScore {
relevance,
recency,
complexity,
usage_frequency: usage,
combined_score: combined,
}
}
}
```
---
## 6. Integration Specifications
### 6.1 System Integration Architecture
```rust
pub struct CodeGraphRAGSystem {
// Core components
retrieval_engine: HierarchicalRetriever,
code_analyzer: MultiModalCodeAnalyzer,
context_manager: ContextWindowManager,
openai_client: OpenAILoadBalancer,
// Storage layers
vector_store: VectorStore<CodeEmbedding>,
graph_store: CodeGraphStore,
cache_layer: CacheLayer,
// Monitoring and metrics
metrics_collector: MetricsCollector,
health_monitor: HealthMonitor,
}
impl CodeGraphRAGSystem {
pub async fn process_query(&self, query: CodeQuery) -> Result<CodeIntelligenceResponse, RAGError> {
// Start query processing timer
let start_time = Instant::now();
// Phase 1: Multi-modal analysis
let analyzed_query = self.code_analyzer.analyze_query(&query).await?;
// Phase 2: Hierarchical retrieval
let raw_contexts = self.retrieval_engine.retrieve_contexts(&analyzed_query).await?;
// Phase 3: Context optimization
let optimized_context = self.context_manager.optimize_context(raw_contexts, &query).await?;
// Phase 4: LLM generation
let completion_request = self.build_completion_request(&query, &optimized_context);
let response = self.openai_client.execute_request(completion_request).await?;
// Phase 5: Response post-processing
let processed_response = self.post_process_response(response, &query).await?;
// Record metrics
self.metrics_collector.record_query_metrics(QueryMetrics {
latency: start_time.elapsed(),
context_size: optimized_context.total_tokens,
compression_ratio: optimized_context.compression_ratio,
response_quality: self.assess_response_quality(&processed_response).await,
});
Ok(processed_response)
}
}
```
### 6.2 API Integration Patterns
```rust
// GraphQL API Integration
pub mod graphql_api {
use async_graphql::*;
#[Object]
impl Query {
async fn code_intelligence(
&self,
ctx: &Context<'_>,
query: String,
language: Option<String>,
context_limit: Option<usize>,
) -> Result<CodeIntelligenceResponse> {
let rag_system = ctx.data::<CodeGraphRAGSystem>()?;
let code_query = CodeQuery::new(query, language, context_limit);
rag_system.process_query(code_query).await
}
async fn semantic_search(
&self,
ctx: &Context<'_>,
query: String,
limit: Option<usize>,
) -> Result<Vec<SemanticMatch>> {
let rag_system = ctx.data::<CodeGraphRAGSystem>()?;
rag_system.semantic_search(query, limit.unwrap_or(10)).await
}
}
}
// MCP Integration
pub mod mcp_integration {
use mcp_rs::*;
#[derive(McpTool)]
pub struct CodeIntelligenceTool {
rag_system: Arc<CodeGraphRAGSystem>,
}
#[async_trait]
impl McpToolExecutor for CodeIntelligenceTool {
async fn execute(&self, request: ToolRequest) -> ToolResponse {
match request.name.as_str() {
"code_intelligence" => {
let query = request.arguments.get("query").unwrap();
let result = self.rag_system.process_query(
CodeQuery::from_string(query.to_string())
).await;
ToolResponse::success(serde_json::to_value(result).unwrap())
}
_ => ToolResponse::error("Unknown tool".to_string()),
}
}
}
}
```
### 6.3 Performance Monitoring Integration
```rust
pub struct RAGMetricsCollector {
query_latency: prometheus::HistogramVec,
retrieval_accuracy: prometheus::GaugeVec,
context_compression: prometheus::HistogramVec,
openai_errors: prometheus::CounterVec,
cache_hit_rate: prometheus::GaugeVec,
}
impl RAGMetricsCollector {
pub fn record_query_metrics(&self, metrics: QueryMetrics) {
self.query_latency
.with_label_values(&["total"])
.observe(metrics.latency.as_secs_f64());
self.context_compression
.with_label_values(&["ratio"])
.observe(metrics.compression_ratio);
self.retrieval_accuracy
.with_label_values(&["quality"])
.set(metrics.response_quality);
}
pub fn record_retrieval_metrics(&self, metrics: RetrievalMetrics) {
self.cache_hit_rate
.with_label_values(&[&metrics.cache_type])
.set(metrics.hit_rate);
}
}
```
---
## 7. Deployment and Scalability
### 7.1 Single Binary Architecture
```rust
// Embedded resources for single binary deployment
pub struct EmbeddedResources {
tree_sitter_grammars: &'static [u8],
embedding_models: &'static [u8],
configuration_schemas: &'static [u8],
}
pub struct CodeGraphBinary {
rag_system: CodeGraphRAGSystem,
web_server: axum::Server,
grpc_server: tonic::Server,
resources: EmbeddedResources,
}
impl CodeGraphBinary {
pub async fn start(&self) -> Result<(), DeploymentError> {
// Initialize embedded resources
self.initialize_embedded_models().await?;
// Start web server
let web_handle = tokio::spawn(self.start_web_server());
// Start gRPC server
let grpc_handle = tokio::spawn(self.start_grpc_server());
// Wait for both servers
tokio::try_join!(web_handle, grpc_handle)?;
Ok(())
}
}
```
### 7.2 Horizontal Scaling Strategy
```rust
pub struct RAGClusterManager {
nodes: Vec<RAGNode>,
load_balancer: ClusterLoadBalancer,
consensus_manager: ConsensusManager,
shared_cache: DistributedCache,
}
impl RAGClusterManager {
pub async fn distribute_query(&self, query: CodeQuery) -> Result<CodeIntelligenceResponse, ClusterError> {
// Select optimal node based on current load and specialization
let node = self.load_balancer.select_node(&query).await?;
// Execute query with fallback
match node.process_query(query.clone()).await {
Ok(response) => Ok(response),
Err(_) => {
// Fallback to other nodes
self.fallback_execution(query).await
}
}
}
}
```
---
## 8. Implementation Roadmap
### Phase 1: Foundation (Weeks 1-2)
- Tree-sitter integration for syntax analysis
- Basic vector store implementation
- OpenAI API client with retry logic
### Phase 2: Multi-Modal Analysis (Weeks 3-4)
- Semantic analysis layer
- Multi-modal embedding fusion
- Context extraction algorithms
### Phase 3: Retrieval Optimization (Weeks 5-6)
- Hierarchical retrieval implementation
- Context window optimization
- Compression algorithms
### Phase 4: Integration & Performance (Weeks 7-8)
- API integration (GraphQL, MCP)
- Performance optimization
- Monitoring and metrics
### Phase 5: Deployment & Scaling (Weeks 9-10)
- Single binary packaging
- Clustering support
- Production deployment
---
## 9. Success Metrics
### Performance Metrics
- Query latency: <50ms (95th percentile)
- Indexing speed: <1s incremental updates
- Memory usage: <50MB binary
- CPU efficiency: <10% idle system load
### Quality Metrics
- Retrieval accuracy: >95% relevant results
- Response relevance: >90% user satisfaction
- Context compression: <20% information loss
- API reliability: >99.9% uptime
### Scalability Metrics
- Codebase size: Support 10M+ lines
- Concurrent queries: 1000+ QPS
- Node scaling: Linear performance scaling
- Cache efficiency: >80% hit rate
---
## Conclusion
This comprehensive RAG architecture provides a solid foundation for building a high-performance code intelligence system. The multi-modal approach combining syntax and semantic analysis, hierarchical retrieval strategies, and optimized OpenAI API integration patterns will deliver the sub-50ms query performance required for real-time code assistance while maintaining high accuracy and scalability.