codegraph-mcp-spec.md•8.85 kB
---
pdf-engine: lualatex
mainfont: "DejaVu Serif"
monofont: "DejaVu Sans Mono"
header-includes: |
\usepackage{fontspec}
\directlua{
luaotfload.add_fallback("emojifallback", {"NotoColorEmoji:mode=harf;"})
}
\setmainfont[
RawFeature={fallback=emojifallback}
]{DejaVu Serif}
---
# CodeGraph MCP Protocol Specification
## Executive Summary
The CodeGraph Model Context Protocol (MCP) Server provides a comprehensive multi-agent coordination framework built on the MCP specification. It enables real-time WebSocket-based communication, distributed agent management, and sophisticated message routing for collaborative code analysis and development workflows.
## Architecture Overview
### Core Components
1. **Transport Layer**: WebSocket-based transport with fallback support
2. **Agent Registry**: Distributed agent discovery and lifecycle management
3. **Message Router**: Protocol-compliant routing with validation
4. **Coordination Engine**: Multi-agent orchestration patterns
5. **Security Layer**: Authentication, authorization, and message validation
### Protocol Compliance
- **MCP Version**: 2025-06-18 (Latest)
- **Transport**: WebSocket with HTTP fallback
- **Message Format**: JSON-RPC 2.0
- **Session Management**: Persistent sessions with reconnection support
## Transport Layer Architecture
### WebSocket Transport Features
- Full-duplex real-time communication
- Session persistence with unique identifiers
- Automatic reconnection with exponential backoff
- Message queuing during disconnections
- Health monitoring and heartbeat mechanisms
### Multi-Transport Support
```typescript
interface TransportConfig {
primary: 'websocket' | 'streamable-http' | 'stdio';
fallback?: 'streamable-http' | 'sse';
timeout: number;
retryAttempts: number;
heartbeatInterval: number;
}
```
### Session Management
- UUID-based session identification
- Session state persistence across disconnections
- Resource cleanup on session termination
- Cross-session message routing capabilities
## Agent SDK Design Patterns
### Core Agent Interface
```typescript
interface CodeGraphAgent {
id: string;
type: AgentType;
capabilities: AgentCapability[];
status: AgentStatus;
metadata: AgentMetadata;
// Lifecycle methods
initialize(config: AgentConfig): Promise<void>;
start(): Promise<void>;
stop(): Promise<void>;
destroy(): Promise<void>;
// Communication methods
sendMessage(message: AgentMessage): Promise<void>;
broadcast(message: AgentMessage): Promise<void>;
subscribe(topic: string): Promise<void>;
unsubscribe(topic: string): Promise<void>;
}
```
### Agent Types and Capabilities
```typescript
enum AgentType {
COORDINATOR = 'coordinator',
ANALYZER = 'analyzer',
TRANSFORMER = 'transformer',
VALIDATOR = 'validator',
REPORTER = 'reporter'
}
interface AgentCapability {
name: string;
version: string;
description: string;
inputSchema: JSONSchema;
outputSchema: JSONSchema;
}
```
### Agent Discovery and Registration
- Automatic agent discovery via multicast
- Manual registration with capability declaration
- Health check mechanisms
- Dynamic capability updates
## Protocol Message Validation and Routing
### Message Schema Validation
All messages conform to JSON-RPC 2.0 with CodeGraph extensions:
```json
{
"jsonrpc": "2.0",
"method": "codegraph/agent/coordinate",
"params": {
"agentId": "uuid",
"sessionId": "uuid",
"payload": {
"type": "task_assignment",
"data": {}
}
},
"id": "request-uuid"
}
```
### Routing Engine
```typescript
interface MessageRouter {
route(message: MCPMessage): Promise<RouteResult>;
addRoute(pattern: RoutePattern, handler: RouteHandler): void;
removeRoute(pattern: RoutePattern): void;
// Advanced routing features
routeWithLoadBalancing(message: MCPMessage): Promise<RouteResult>;
routeWithFailover(message: MCPMessage): Promise<RouteResult>;
broadcastToGroup(group: string, message: MCPMessage): Promise<void>;
}
```
### Message Types
1. **Control Messages**: Agent lifecycle, discovery, heartbeat
2. **Task Messages**: Work assignment, progress updates, results
3. **Coordination Messages**: Inter-agent communication, synchronization
4. **System Messages**: Error handling, logging, metrics
## Multi-Agent Communication Patterns
### Communication Topologies
#### 1. Hub-and-Spoke Pattern
- Central coordinator manages all agent interactions
- Simplified routing and conflict resolution
- Single point of failure concerns
#### 2. Mesh Pattern
- Direct peer-to-peer agent communication
- Distributed load and resilience
- Complex routing and consistency challenges
#### 3. Hierarchical Pattern
- Tree-structured agent organization
- Delegated coordination responsibilities
- Balanced complexity and scalability
#### 4. Pipeline Pattern
- Sequential processing chain
- Optimized for linear workflows
- Built-in backpressure handling
### Coordination Mechanisms
```typescript
interface CoordinationEngine {
// Task distribution
distributeTask(task: Task, agents: Agent[]): Promise<TaskResult[]>;
// Synchronization
synchronize(agents: Agent[], barrier: string): Promise<void>;
// Consensus
achieveConsensus(agents: Agent[], proposal: Proposal): Promise<ConsensusResult>;
// Load balancing
balanceLoad(tasks: Task[], agents: Agent[]): Promise<LoadBalanceResult>;
}
```
### Event-Driven Architecture
- Pub/Sub messaging for loose coupling
- Event streaming with replay capabilities
- Dead letter queues for failed messages
- Circuit breaker patterns for resilience
## Security and Authentication
### Transport Security
- TLS/WSS encryption for all communications
- Certificate pinning for client validation
- Token-based authentication with JWT
- Rate limiting and DDoS protection
### Message Security
- Message signing with Ed25519 keys
- Payload encryption for sensitive data
- Replay attack prevention with nonces
- Role-based access control (RBAC)
### Agent Security
- Agent identity verification
- Capability-based permissions
- Sandboxed execution environments
- Audit logging for all actions
## Performance and Scalability
### Horizontal Scaling
- Stateless server design
- Load balancer integration
- Database sharding strategies
- Distributed caching with Redis
### Performance Optimizations
- Message batching and compression
- Connection pooling
- Lazy loading of agent capabilities
- Asynchronous processing pipelines
### Monitoring and Metrics
- Real-time performance dashboards
- Agent health monitoring
- Message throughput tracking
- Error rate analysis
## Implementation Specifications
### Required Dependencies
- WebSocket server (ws library)
- JSON-RPC 2.0 implementation
- Schema validation (Ajv)
- Authentication (JWT)
- Database (PostgreSQL/MongoDB)
- Message queue (Redis/RabbitMQ)
### Configuration Management
- Environment-based configuration
- Runtime configuration updates
- Feature flags for gradual rollouts
- A/B testing framework integration
### Error Handling
- Comprehensive error classification
- Graceful degradation strategies
- Automatic recovery mechanisms
- Detailed error reporting
### Testing Strategy
- Unit tests for core components
- Integration tests for message flows
- Load testing for performance validation
- Chaos engineering for resilience testing
## API Endpoints
### Core MCP Endpoints
- `POST /mcp` - Main message handling
- `GET /mcp` - SSE notifications
- `DELETE /mcp` - Session termination
- `WS /ws` - WebSocket upgrade
### CodeGraph Extensions
- `GET /agents` - List registered agents
- `POST /agents/register` - Agent registration
- `DELETE /agents/{id}` - Agent deregistration
- `GET /coordination/status` - System status
- `POST /coordination/tasks` - Task submission
## Deployment Considerations
### Infrastructure Requirements
- Kubernetes cluster with ingress
- Load balancer with WebSocket support
- Persistent storage for session data
- Monitoring and logging stack
### High Availability Setup
- Multi-region deployment
- Database replication
- Circuit breakers and failover
- Health checks and auto-recovery
### Development Workflow
- Docker containerization
- CI/CD pipeline integration
- Infrastructure as Code (Terraform)
- Environment promotion strategy
## Future Enhancements
### Planned Features
- Visual agent topology designer
- Machine learning-based load prediction
- Advanced consensus algorithms
- Cross-language agent support
### Research Areas
- Quantum-resistant cryptography
- Federated learning integration
- Edge computing deployment
- AI-driven coordination optimization
---
This specification provides the foundation for implementing a production-ready CodeGraph MCP server that enables sophisticated multi-agent coordination while maintaining full compliance with the Model Context Protocol standard.