Skip to main content
Glama

CodeGraph CLI MCP Server

by Jakedismo
.codegraph.toml.example3.69 kB
# CodeGraph Configuration File # Copy this to .codegraph.toml or ~/.codegraph/config.toml and customize # ============================================================================ # Embedding Configuration # ============================================================================ [embedding] # Provider: "auto", "onnx", "ollama", "openai", or "lmstudio" # "auto" will detect available models automatically # "lmstudio" recommended for MLX + Flash Attention 2 (macOS) provider = "lmstudio" # Model path or identifier # For ONNX: Absolute path to model directory (auto-detected from HuggingFace cache) # For Ollama: Model name (e.g., "all-minilm:latest") # For LM Studio: Model name (e.g., "jinaai/jina-embeddings-v3") # For OpenAI: Model name (e.g., "text-embedding-3-small") # Recommended: jinaai/jina-embeddings-v3 (1536-dim, optimized for code) model = "jinaai/jina-embeddings-v3" # LM Studio URL (default port 1234) lmstudio_url = "http://localhost:1234" # Ollama URL (only used if provider is "ollama") ollama_url = "http://localhost:11434" # OpenAI API key (only used if provider is "openai") # Can also be set via OPENAI_API_KEY environment variable # openai_api_key = "sk-..." # Embedding dimension (1536 for jina-code-embeddings-1.5b, 384 for all-MiniLM) dimension = 1536 # Batch size for embedding generation (GPU optimization) batch_size = 64 # ============================================================================ # LLM Configuration (for insights generation) # ============================================================================ [llm] # Enable LLM insights (false = context-only mode for agents like Claude/GPT-4) # Set to false for maximum speed if using an external agent enabled = false # LLM provider: "ollama" or "lmstudio" # "lmstudio" recommended for MLX + Flash Attention 2 (macOS) provider = "lmstudio" # LLM model identifier # For LM Studio: lmstudio-community/DeepSeek-Coder-V2-Lite-Instruct-GGUF/DeepSeek-Coder-V2-Lite-Instruct-Q4_K_M.gguf # For Ollama: Model name (e.g., "qwen2.5-coder:14b", "codellama:13b") # Recommended: DeepSeek Coder v2 Lite Instruct Q4_K_M (superior performance) model = "lmstudio-community/DeepSeek-Coder-V2-Lite-Instruct-GGUF" # LM Studio URL (default port 1234) lmstudio_url = "http://localhost:1234" # Ollama URL ollama_url = "http://localhost:11434" # Context window size (tokens) # DeepSeek Coder v2 Lite: 32768 tokens context_window = 32000 # Temperature for generation (0.0 = deterministic, 1.0 = creative) temperature = 0.1 # Insights mode: "context-only", "balanced", or "deep" # - context-only: Return context only (fastest, for agents) # - balanced: Process top 10 files with LLM (good speed/quality) # - deep: Process all reranked files (comprehensive) insights_mode = "context-only" # ============================================================================ # Performance Configuration # ============================================================================ [performance] # Number of worker threads (defaults to CPU count) num_threads = 0 # 0 = auto-detect # Cache size in MB cache_size_mb = 512 # Enable GPU acceleration (requires CUDA/Metal support) enable_gpu = false # Maximum concurrent requests for embedding/LLM max_concurrent_requests = 4 # ============================================================================ # Logging Configuration # ============================================================================ [logging] # Log level: "trace", "debug", "info", "warn", "error" # Use "warn" during indexing for clean TUI output (recommended) # Use "info" for development/debugging level = "warn" # Log format: "pretty", "json", "compact" format = "pretty"

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Jakedismo/codegraph-rust'

If you have feedback or need assistance with the MCP directory API, please join our Discord server