Google OR-Tools server
by Jacck
# MCP-ORTools
A Model Context Protocol (MCP) server implementation using Google OR-Tools for constraint solving. Designed for use with Large Language Models through standardized constraint model specification.
## Overview
MCP-ORTools integrates Google's OR-Tools constraint programming solver with Large Language Models through the Model Context Protocol, enabling AI models to:
- Submit and validate constraint models
- Set model parameters
- Solve constraint satisfaction and optimization problems
- Retrieve and analyze solutions
## Installation
1. Install the package:
```bash
pip install git+https://github.com/Jacck/mcp-ortools.git
```
2. Configure Claude Desktop
Create the configuration file at `%APPDATA%\Claude\claude_desktop_config.json` (Windows) or `~/Library/Application Support/Claude/claude_desktop_config.json` (macOS):
```json
{
"mcpServers": {
"ortools": {
"command": "python",
"args": ["-m", "mcp_ortools.server"]
}
}
}
```
## Model Specification
Models are specified in JSON format with three main sections:
- `variables`: Define variables and their domains
- `constraints`: List of constraints using OR-Tools methods
- `objective`: Optional optimization objective
### Constraint Syntax
Constraints must use OR-Tools method syntax:
- `.__le__()` for less than or equal (<=)
- `.__ge__()` for greater than or equal (>=)
- `.__eq__()` for equality (==)
- `.__ne__()` for not equal (!=)
## Usage Examples
### Simple Optimization Model
```json
{
"variables": [
{"name": "x", "domain": [0, 10]},
{"name": "y", "domain": [0, 10]}
],
"constraints": [
"(x + y).__le__(15)",
"x.__ge__(2 * y)"
],
"objective": {
"expression": "40 * x + 100 * y",
"maximize": true
}
}
```
### Knapsack Problem
Example: Select items with values [3,1,2,1] and weights [2,2,1,1] with total weight limit of 2.
```json
{
"variables": [
{"name": "p0", "domain": [0, 1]},
{"name": "p1", "domain": [0, 1]},
{"name": "p2", "domain": [0, 1]},
{"name": "p3", "domain": [0, 1]}
],
"constraints": [
"(2*p0 + 2*p1 + p2 + p3).__le__(2)"
],
"objective": {
"expression": "3*p0 + p1 + 2*p2 + p3",
"maximize": true
}
}
```
Additional constraints example:
```json
{
"constraints": [
"p0.__eq__(1)", // Item p0 must be selected
"p1.__ne__(p2)", // Can't select both p1 and p2
"(p2 + p3).__ge__(1)" // Must select at least one of p2 or p3
]
}
```
## Features
- Full OR-Tools CP-SAT solver support
- JSON-based model specification
- Support for:
- Integer and boolean variables (domain: [min, max])
- Linear constraints using OR-Tools method syntax
- Linear optimization objectives
- Timeouts and solver parameters
- Binary constraints and relationships
- Portfolio selection problems
- Knapsack problems
### Supported Operations in Constraints
- Basic arithmetic: +, -, *
- Comparisons: .__le__(), .__ge__(), .__eq__(), .__ne__()
- Linear combinations of variables
- Binary logic through combinations of constraints
## Development
To setup for development:
```bash
git clone https://github.com/Jacck/mcp-ortools.git
cd mcp-ortools
pip install -e .
```
## Model Response Format
The solver returns solutions in JSON format:
```json
{
"status": "OPTIMAL",
"solve_time": 0.045,
"variables": {
"p0": 0,
"p1": 0,
"p2": 1,
"p3": 1
},
"objective_value": 3.0
}
```
Status values:
- OPTIMAL: Found optimal solution
- FEASIBLE: Found feasible solution
- INFEASIBLE: No solution exists
- UNKNOWN: Could not determine solution
## License
MIT License - see LICENSE file for details