# MCP Project with Gemini Integration
This project implements a Model Control Protocol (MCP) server with Google Gemini LLM integration, providing a flexible framework for building AI-powered applications.
## Project Structure
```
.
├── .venv/ # Virtual environment (gitignored)
├── client-server/ # MCP client and server implementation
│ ├── client-sse.py # SSE client
│ ├── client-stdio.py # stdio client
│ └── server.py # MCP server
├── gemini-llm-integration/ # Gemini LLM integration
│ ├── client-simple.py # Simple Gemini client
│ ├── server.py # Gemini server implementation
│ └── data/ # Knowledge base and data files
├── .env # Environment variables
├── .env.example # Example environment variables
├── requirements.txt # Project dependencies
└── test_gemini.py # Test script for Gemini API
```
## Prerequisites
- Python 3.8+
- UV package manager (`pip install uv`)
- Google Gemini API key (for Gemini integration)
## Setup
1. Clone the repository and navigate to the project directory.
2. Create and activate a virtual environment:
```bash
uv venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
```
3. Install dependencies:
```bash
uv pip install -r requirements.txt
```
4. Copy `.env.example` to `.env` and update with your API keys:
```bash
cp .env.example .env
# Edit .env with your API keys
```
## Running the Project
### MCP Server
1. Start the MCP server:
```bash
cd client-server
python server.py
```
2. In a separate terminal, run a client:
```bash
# For SSE client
python client-sse.py
# For stdio client
python client-stdio.py
```
### Gemini Integration
1. Start the Gemini server:
```bash
cd gemini-llm-integration
python server.py
```
2. Run the Gemini client:
```bash
python client-simple.py
```
## Development
- Format code:
```bash
black .
isort .
```
- Run tests:
```bash
pytest
```
- Type checking:
```bash
mypy .
```
## License
[Specify your license here]
## Contributing
1. Fork the repository
2. Create a feature branch
3. Commit your changes
4. Push to the branch
5. Create a new Pull Request
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/ImDPS/MCP'
If you have feedback or need assistance with the MCP directory API, please join our Discord server