Supports environment variable management through .env files for storing configuration settings and API keys securely.
Integrates with Google Gemini LLM to provide AI capabilities for applications, including knowledge base access and flexible model interaction through a Model Control Protocol server framework.
Enables testing of the Gemini API integration through the provided test script.
Built using Python 3.8+ as the core development language for the MCP server implementation.
MCP Project with Gemini Integration
This project implements a Model Control Protocol (MCP) server with Google Gemini LLM integration, providing a flexible framework for building AI-powered applications.
Project Structure
Related MCP server: MCP Gemini CLI
Prerequisites
Python 3.8+
UV package manager (
pip install uv)Google Gemini API key (for Gemini integration)
Setup
Clone the repository and navigate to the project directory.
Create and activate a virtual environment:
uv venv .venv source .venv/bin/activate # On Windows: .venv\Scripts\activateInstall dependencies:
uv pip install -r requirements.txtCopy
.env.exampleto.envand update with your API keys:cp .env.example .env # Edit .env with your API keys
Running the Project
MCP Server
Start the MCP server:
cd client-server python server.pyIn a separate terminal, run a client:
# For SSE client python client-sse.py # For stdio client python client-stdio.py
Gemini Integration
Start the Gemini server:
cd gemini-llm-integration python server.pyRun the Gemini client:
python client-simple.py
Development
Format code:
black . isort .Run tests:
pytestType checking:
mypy .
License
[Specify your license here]
Contributing
Fork the repository
Create a feature branch
Commit your changes
Push to the branch
Create a new Pull Request