Skip to main content
Glama

MCP with Gemini Integration

by ImDPS
  • Linux

MCP Project with Gemini Integration

This project implements a Model Control Protocol (MCP) server with Google Gemini LLM integration, providing a flexible framework for building AI-powered applications.

Project Structure

. ├── .venv/ # Virtual environment (gitignored) ├── client-server/ # MCP client and server implementation │ ├── client-sse.py # SSE client │ ├── client-stdio.py # stdio client │ └── server.py # MCP server ├── gemini-llm-integration/ # Gemini LLM integration │ ├── client-simple.py # Simple Gemini client │ ├── server.py # Gemini server implementation │ └── data/ # Knowledge base and data files ├── .env # Environment variables ├── .env.example # Example environment variables ├── requirements.txt # Project dependencies └── test_gemini.py # Test script for Gemini API

Prerequisites

  • Python 3.8+
  • UV package manager (pip install uv)
  • Google Gemini API key (for Gemini integration)

Setup

  1. Clone the repository and navigate to the project directory.
  2. Create and activate a virtual environment:
    uv venv .venv source .venv/bin/activate # On Windows: .venv\Scripts\activate
  3. Install dependencies:
    uv pip install -r requirements.txt
  4. Copy .env.example to .env and update with your API keys:
    cp .env.example .env # Edit .env with your API keys

Running the Project

MCP Server

  1. Start the MCP server:
    cd client-server python server.py
  2. In a separate terminal, run a client:
    # For SSE client python client-sse.py # For stdio client python client-stdio.py

Gemini Integration

  1. Start the Gemini server:
    cd gemini-llm-integration python server.py
  2. Run the Gemini client:
    python client-simple.py

Development

  • Format code:
    black . isort .
  • Run tests:
    pytest
  • Type checking:
    mypy .

License

[Specify your license here]

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a new Pull Request
-
security - not tested
F
license - not found
-
quality - not tested

Implements a Model Control Protocol server integrated with Google Gemini LLM, providing a flexible framework for building AI-powered applications.

  1. Project Structure
    1. Prerequisites
      1. Setup
        1. Running the Project
          1. MCP Server
          2. Gemini Integration
        2. Development
          1. License
            1. Contributing

              Related MCP Servers

              • -
                security
                A
                license
                -
                quality
                A server that provides AI-powered image generation, modification, and processing capabilities through the Model Context Protocol, leveraging Google Gemini models and other image services.
                Last updated -
                6
                Python
                MIT License
                • Linux
                • Apple
              • -
                security
                -
                license
                -
                quality
                An MCP server implementation that allows using Google's Gemini AI models (specifically Gemini 1.5 Pro) through Claude or other MCP clients via the Model Context Protocol.
                Last updated -
                1
                JavaScript
              • -
                security
                F
                license
                -
                quality
                A server that provides access to Google Gemini AI capabilities including text generation, image analysis, YouTube video analysis, and web search functionality through the MCP protocol.
                Last updated -
                2
                TypeScript
                • Apple
              • A
                security
                A
                license
                A
                quality
                A dedicated server that wraps Google's Gemini AI models in a Model Context Protocol (MCP) interface, allowing other LLMs and MCP-compatible systems to access Gemini's capabilities like content generation, function calling, chat, and file handling through standardized tools.
                Last updated -
                16
                20
                TypeScript
                MIT License
                • Linux
                • Apple

              View all related MCP servers

              MCP directory API

              We provide all the information about MCP servers via our MCP API.

              curl -X GET 'https://glama.ai/api/mcp/v1/servers/ImDPS/MCP'

              If you have feedback or need assistance with the MCP directory API, please join our Discord server