Skip to main content
Glama

mcp-agent-forge

README.md6.47 kB
# Agent Forge - 智能体锻造工具 (AI Agent Forge Tool) [English](#english) | [中文](#chinese) <a name="chinese"></a> ## 中文版 Agent Forge 是一个智能体创建和管理平台,能够创建和管理具有特定性格特征的智能体,并模拟它们对问题的回答。通过Agent Forge MCP,你可以快速构建起一个类似于[CO-STORM](https://github.com/stanford-oval/storm)的多智能体协作研究项目。 ### 功能特点 - 智能体锻造:创建具有特定性格特征的智能体 - 思维模拟:模拟智能体回答问题 - 完整管理:支持智能体的查询、列表、删除等操作 - 多轮对话:支持深度的多轮对话交互 - 自然语言处理:基于 DeepSeek API 的高级语言理解能力 ### 系统要求 - Go 1.24.1 或更高版本 - DeepSeek API 密钥 ### 安装 ```bash git clone https://github.com/HundunOnline/mcp-agent-forge.git cd mcp-agent-forge && make build ``` ### MCP 配置 ```json { "mcpServers": { "mcp-agent-forge": { "command": "/path/to/mcp-agent-forge", "env": { "DEEPSEEK_API_KEY": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx", } } } } ``` ### 配置说明 #### Configuration #### Environment Variables | 变量名 | 描述 | 默认值 | 是否必需 | |--------|------|---------|----------| | `DEEPSEEK_API_KEY` | DeepSeek API 密钥 | - | 是 | | `LOG_LEVEL` | 日志级别 (debug, info, warn, error) | info | 否 | | `LOG_PATH` | 日志文件路径 | ./logs | 否 | | `CONFIG_PATH` | 配置文件路径 | ./config/config.yaml | 否 | | `PORT` | 服务端口号 | 8080 | 否 | | `DEBUG` | 调试模式开关 | false | 否 | ### 使用方法 - `expert_personality_generation`: 创建新的智能体 - `agent_answer`: 模拟智能体回答问题 - `get_agent`: 获取智能体信息 - `list_agents`: 列出所有智能体 - `delete_agent`: 删除智能体 ### 示例 #### 基本用法 ```go // 创建智能体 { "name": "expert_personality_generation", "arguments": { "agent_name": "马斯克思维模型", "core_traits": "系统思维,第一性原理,工程思维,风险管理,创新思维" } } // 智能体回答 { "name": "agent_answer", "arguments": { "agent_id": "your_agent_id", "context": "如何看待特斯拉的发展策略?", "planned_rounds": 3, "current_round": 1, "need_more_rounds": false } } ``` ### 实际应用案例 我们在 Claude AI 中创建了一个示例应用,展示了如何使用 Agent Forge 创建和管理专家智能体: [Claude AI Demo](https://claude.ai/share/00213269-9ab9-4923-9349-70d1492cd71e) 这个示例展示了: - 如何创建具有特定专业背景的智能体 - 如何进行多轮对话交互 - 如何利用智能体的专业知识解决问题 - 如何管理和调整智能体的行为 ### 贡献指南 欢迎提交 Pull Request 或创建 Issue 来帮助改进这个项目。我们特别欢迎以下方面的贡献: - 新的智能体模型和特征 - 性能优化 - 文档改进 - Bug 修复 - 新功能建议 ### 许可证 本项目采用 MIT 许可证。详见 [LICENSE](LICENSE) 文件。 --- <a name="english"></a> ## English Version Agent Forge is a platform for creating and managing AI agents with specific personality traits and simulating their responses to questions. Through agent forge mcp, you can quickly build a multi-agent collaboration research project similar to [CO-STORM](https://github.com/stanford-oval/storm). ### Features - Agent Forging: Create agents with specific personality traits - Thought Simulation: Simulate agent responses to questions - Complete Management: Support for agent querying, listing, deletion, and other operations - Multi-round Dialogue: Support for deep multi-round conversation interactions - Natural Language Processing: Advanced language understanding capabilities based on DeepSeek API ### System Requirements - Go 1.24.1 or higher - DeepSeek API key ### Installation ```bash git clone https://github.com/HundunOnline/mcp-agent-forge.git cd agent-forge && make build ``` ### MCP Configuration ```json { "mcpServers": { "mcp-agent-forge": { "command": "/path/to/mcp-agent-forge", "env": { "DEEPSEEK_API_KEY": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx", } } } } ``` ### Configuration Guide #### Configuration #### Environment Variables | Variable Name | Description | Default Value | Required | |--------------|-------------|---------------|----------| | `DEEPSEEK_API_KEY` | DeepSeek API Key | - | Yes | | `LOG_LEVEL` | Logging level (debug, info, warn, error) | info | No | | `LOG_PATH` | Log file path | ./logs | No | | `CONFIG_PATH` | Configuration file path | ./config/config.yaml | No | | `PORT` | Service port | 8080 | No | | `DEBUG` | Debug mode switch | false | No | ### Usage - `expert_personality_generation`: Create a new agent - `agent_answer`: Simulate agent responses - `get_agent`: Get agent information - `list_agents`: List all agents - `delete_agent`: Delete an agent ### Examples #### Basic Usage ```go // Create an agent { "name": "expert_personality_generation", "arguments": { "agent_name": "Elon Musk Thinking Model", "core_traits": "Systems Thinking,First Principles,Engineering Mindset,Risk Management,Innovation" } } // Agent response { "name": "agent_answer", "arguments": { "agent_id": "your_agent_id", "context": "What's your view on Tesla's development strategy?", "planned_rounds": 3, "current_round": 1, "need_more_rounds": false } } ``` ### Real Application Case We created a sample application in Claude AI that demonstrates how to use Agent Forge to create and manage expert agents: [Claude AI Demo](https://claude.ai/share/00213269-9ab9-4923-9349-70d1492cd71e) This example shows: - How to create agents with specific professional backgrounds - How to conduct multi-round dialogue interactions - How to utilize agents' expertise to solve problems - How to manage and adjust agent behavior ### Contributing We welcome Pull Requests or Issues to help improve this project. We especially welcome contributions in the following areas: - New agent models and traits - Performance optimizations - Documentation improvements - Bug fixes - New feature suggestions ### License This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/HundunOnline/mcp-agent-forge'

If you have feedback or need assistance with the MCP directory API, please join our Discord server