Skip to main content
Glama

Agent Forge - 智能体锻造工具 (AI Agent Forge Tool)

English | 中文

中文版

Agent Forge 是一个智能体创建和管理平台,能够创建和管理具有特定性格特征的智能体,并模拟它们对问题的回答。通过Agent Forge MCP,你可以快速构建起一个类似于CO-STORM的多智能体协作研究项目。

功能特点

  • 智能体锻造:创建具有特定性格特征的智能体

  • 思维模拟:模拟智能体回答问题

  • 完整管理:支持智能体的查询、列表、删除等操作

  • 多轮对话:支持深度的多轮对话交互

  • 自然语言处理:基于 DeepSeek API 的高级语言理解能力

系统要求

  • Go 1.24.1 或更高版本

  • DeepSeek API 密钥

安装

git clone https://github.com/HundunOnline/mcp-agent-forge.git cd mcp-agent-forge && make build

MCP 配置

{ "mcpServers": { "mcp-agent-forge": { "command": "/path/to/mcp-agent-forge", "env": { "DEEPSEEK_API_KEY": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx", } } } }

配置说明

Configuration

Environment Variables

变量名

描述

默认值

是否必需

DEEPSEEK_API_KEY

DeepSeek API 密钥

-

LOG_LEVEL

日志级别 (debug, info, warn, error)

info

LOG_PATH

日志文件路径

./logs

CONFIG_PATH

配置文件路径

./config/config.yaml

PORT

服务端口号

8080

DEBUG

调试模式开关

false

使用方法

  • expert_personality_generation: 创建新的智能体

  • agent_answer: 模拟智能体回答问题

  • get_agent: 获取智能体信息

  • list_agents: 列出所有智能体

  • delete_agent: 删除智能体

示例

基本用法

// 创建智能体 { "name": "expert_personality_generation", "arguments": { "agent_name": "马斯克思维模型", "core_traits": "系统思维,第一性原理,工程思维,风险管理,创新思维" } } // 智能体回答 { "name": "agent_answer", "arguments": { "agent_id": "your_agent_id", "context": "如何看待特斯拉的发展策略?", "planned_rounds": 3, "current_round": 1, "need_more_rounds": false } }

实际应用案例

我们在 Claude AI 中创建了一个示例应用,展示了如何使用 Agent Forge 创建和管理专家智能体:

Claude AI Demo

这个示例展示了:

  • 如何创建具有特定专业背景的智能体

  • 如何进行多轮对话交互

  • 如何利用智能体的专业知识解决问题

  • 如何管理和调整智能体的行为

贡献指南

欢迎提交 Pull Request 或创建 Issue 来帮助改进这个项目。我们特别欢迎以下方面的贡献:

  • 新的智能体模型和特征

  • 性能优化

  • 文档改进

  • Bug 修复

  • 新功能建议

许可证

本项目采用 MIT 许可证。详见 LICENSE 文件。


Related MCP server: mcp-dingdingbot-server

English Version

Agent Forge is a platform for creating and managing AI agents with specific personality traits and simulating their responses to questions. Through agent forge mcp, you can quickly build a multi-agent collaboration research project similar to CO-STORM.

Features

  • Agent Forging: Create agents with specific personality traits

  • Thought Simulation: Simulate agent responses to questions

  • Complete Management: Support for agent querying, listing, deletion, and other operations

  • Multi-round Dialogue: Support for deep multi-round conversation interactions

  • Natural Language Processing: Advanced language understanding capabilities based on DeepSeek API

System Requirements

  • Go 1.24.1 or higher

  • DeepSeek API key

Installation

git clone https://github.com/HundunOnline/mcp-agent-forge.git cd agent-forge && make build

MCP Configuration

{ "mcpServers": { "mcp-agent-forge": { "command": "/path/to/mcp-agent-forge", "env": { "DEEPSEEK_API_KEY": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx", } } } }

Configuration Guide

Configuration

Environment Variables

Variable Name

Description

Default Value

Required

DEEPSEEK_API_KEY

DeepSeek API Key

-

Yes

LOG_LEVEL

Logging level (debug, info, warn, error)

info

No

LOG_PATH

Log file path

./logs

No

CONFIG_PATH

Configuration file path

./config/config.yaml

No

PORT

Service port

8080

No

DEBUG

Debug mode switch

false

No

Usage

  • expert_personality_generation: Create a new agent

  • agent_answer: Simulate agent responses

  • get_agent: Get agent information

  • list_agents: List all agents

  • delete_agent: Delete an agent

Examples

Basic Usage

// Create an agent { "name": "expert_personality_generation", "arguments": { "agent_name": "Elon Musk Thinking Model", "core_traits": "Systems Thinking,First Principles,Engineering Mindset,Risk Management,Innovation" } } // Agent response { "name": "agent_answer", "arguments": { "agent_id": "your_agent_id", "context": "What's your view on Tesla's development strategy?", "planned_rounds": 3, "current_round": 1, "need_more_rounds": false } }

Real Application Case

We created a sample application in Claude AI that demonstrates how to use Agent Forge to create and manage expert agents:

Claude AI Demo

This example shows:

  • How to create agents with specific professional backgrounds

  • How to conduct multi-round dialogue interactions

  • How to utilize agents' expertise to solve problems

  • How to manage and adjust agent behavior

Contributing

We welcome Pull Requests or Issues to help improve this project. We especially welcome contributions in the following areas:

  • New agent models and traits

  • Performance optimizations

  • Documentation improvements

  • Bug fixes

  • New feature suggestions

License

This project is licensed under the MIT License. See the LICENSE file for details.

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/HundunOnline/mcp-agent-forge'

If you have feedback or need assistance with the MCP directory API, please join our Discord server