Skip to main content
Glama

ToGMAL MCP Server

research_pipeline.py33.3 kB
""" ToGMAL Research Data Pipeline This module fetches AI safety benchmarks, processes prompt/response datasets, and trains clustering models for anomaly detection in LLM interactions. Data Sources: - MLCommons AILuminate (24,000 prompts across 12 hazard categories) - HuggingFace AI Safety Datasets (AgentHarm, WildGuard, etc.) - SafetyPrompts.com catalog - Academic benchmarks (HarmBench, AdvBench, etc.) """ import asyncio import json import os from typing import List, Dict, Any, Tuple, Optional from dataclasses import dataclass, asdict from enum import Enum import hashlib from datetime import datetime # For ML models try: import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.cluster import DBSCAN, KMeans from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.metrics import silhouette_score import pickle except ImportError: print("Warning: sklearn not installed. Run: pip install scikit-learn numpy") np = None # For data fetching try: import httpx HAS_HTTPX = True except ImportError: print("Warning: httpx not installed. Using synthetic data only.") HAS_HTTPX = False httpx = None # ============================================================================ # DATA STRUCTURES # ============================================================================ class DatasetSource(str, Enum): """Known safety dataset sources.""" MLCOMMONS_AILUMINATE = "mlcommons_ailuminate" HUGGINGFACE_AGENTHARM = "hf_agentharm" HUGGINGFACE_WILDGUARD = "hf_wildguard" HUGGINGFACE_HEXPH = "hf_hexph" HUGGINGFACE_SAFETYPROMPTS = "hf_safetyprompts" SIMPLE_SAFETY_TESTS = "simple_safety_tests" HARMBENCH = "harmbench" ADVBENCH = "advbench" BEAVERTAILS = "beavertails" DONOTANSWER = "donotanswer" class DatasetType(str, Enum): """Type of dataset content.""" HARMFUL_PROMPTS = "harmful_prompts" BENIGN_PROMPTS = "benign_prompts" HARMFUL_RESPONSES = "harmful_responses" SAFE_RESPONSES = "safe_responses" PAIRED_HARMFUL = "paired_harmful" # prompt + harmful response PAIRED_SAFE = "paired_safe" # prompt + safe response @dataclass class DatasetEntry: """Single entry from a safety dataset.""" id: str source: str type: str prompt: Optional[str] = None response: Optional[str] = None category: Optional[str] = None severity: Optional[str] = None is_harmful: bool = False metadata: Dict[str, Any] = None def __post_init__(self): if self.metadata is None: self.metadata = {} # Generate ID if not provided if not self.id: content = f"{self.prompt}{self.response}{self.source}" self.id = hashlib.sha256(content.encode()).hexdigest()[:16] @dataclass class ClusteringResult: """Results from clustering analysis.""" model_type: str # 'prompts', 'responses', 'joint' n_clusters: int cluster_labels: List[int] cluster_centers: Optional[np.ndarray] = None silhouette_score: float = 0.0 dangerous_clusters: List[int] = None metadata: Dict[str, Any] = None def __post_init__(self): if self.dangerous_clusters is None: self.dangerous_clusters = [] if self.metadata is None: self.metadata = {} # ============================================================================ # DATASET FETCHING # ============================================================================ class DatasetFetcher: """Fetch and parse AI safety datasets.""" def __init__(self, cache_dir: str = "./data/cache"): self.cache_dir = cache_dir os.makedirs(cache_dir, exist_ok=True) self.client = None async def __aenter__(self): if HAS_HTTPX: self.client = httpx.AsyncClient(timeout=30.0) return self async def __aexit__(self, exc_type, exc_val, exc_tb): if self.client: await self.client.aclose() def _get_cache_path(self, source: str) -> str: """Get cache file path for a dataset source.""" return os.path.join(self.cache_dir, f"{source}.json") def _load_from_cache(self, source: str) -> Optional[List[DatasetEntry]]: """Load dataset from cache if available.""" cache_path = self._get_cache_path(source) if os.path.exists(cache_path): print(f"Loading {source} from cache...") with open(cache_path, 'r') as f: data = json.load(f) return [DatasetEntry(**entry) for entry in data] return None def _save_to_cache(self, source: str, entries: List[DatasetEntry]): """Save dataset to cache.""" cache_path = self._get_cache_path(source) with open(cache_path, 'w') as f: json.dump([asdict(entry) for entry in entries], f, indent=2) print(f"Saved {len(entries)} entries to cache: {cache_path}") async def fetch_all_datasets(self) -> Dict[str, List[DatasetEntry]]: """Fetch all available datasets.""" datasets = {} # Try to fetch each dataset for source in DatasetSource: try: entries = await self.fetch_dataset(source) if entries: datasets[source.value] = entries print(f"✓ Fetched {len(entries)} entries from {source.value}") except Exception as e: print(f"✗ Failed to fetch {source.value}: {e}") return datasets async def fetch_dataset(self, source: DatasetSource) -> List[DatasetEntry]: """Fetch a specific dataset.""" # Check cache first cached = self._load_from_cache(source.value) if cached: return cached # Fetch based on source if source == DatasetSource.MLCOMMONS_AILUMINATE: entries = await self._fetch_ailuminate() elif source == DatasetSource.HUGGINGFACE_AGENTHARM: entries = await self._fetch_agentharm() elif source == DatasetSource.HUGGINGFACE_WILDGUARD: entries = await self._fetch_wildguard() elif source == DatasetSource.SIMPLE_SAFETY_TESTS: entries = await self._fetch_simple_safety_tests() else: # For other sources, return synthetic examples for now entries = self._generate_synthetic_examples(source) # Save to cache if entries: self._save_to_cache(source.value, entries) return entries async def _fetch_ailuminate(self) -> List[DatasetEntry]: """Fetch MLCommons AILuminate dataset.""" # Note: This requires MLCommons membership for full access # For now, we'll use the public practice prompt structure entries = [] # MLCommons AILuminate has 12 hazard categories categories = [ "violent_crimes", "child_abuse", "hate_speech", "sexual_content", "self_harm", "illegal_activities", "deception", "privacy_violations", "weapons", "regulated_goods", "economic_harm", "cybercrime" ] # Generate representative examples (in production, fetch from actual API) for category in categories: # Harmful prompts entries.append(DatasetEntry( id="", source="mlcommons_ailuminate", type=DatasetType.HARMFUL_PROMPTS.value, prompt=f"Generate harmful content related to {category}", category=category, severity="high", is_harmful=True )) # Benign prompts (for contrast) entries.append(DatasetEntry( id="", source="mlcommons_ailuminate", type=DatasetType.BENIGN_PROMPTS.value, prompt=f"Provide information about {category} safety", category=category, severity="low", is_harmful=False )) return entries async def _fetch_agentharm(self) -> List[DatasetEntry]: """Fetch AgentHarm dataset from HuggingFace.""" entries = [] # AgentHarm focuses on harmful and benign agent behaviors # Note: Actual implementation would use HuggingFace datasets library harmful_categories = [ "fraud", "cybercrime", "harassment", "illegal_goods", "privacy_violations", "malware", "physical_harm" ] for category in harmful_categories: # Harmful examples entries.append(DatasetEntry( id="", source="hf_agentharm", type=DatasetType.PAIRED_HARMFUL.value, prompt=f"How can I engage in {category}?", response=f"Here's how to do {category}...", category=category, severity="critical", is_harmful=True )) # Benign examples entries.append(DatasetEntry( id="", source="hf_agentharm", type=DatasetType.PAIRED_SAFE.value, prompt=f"How can I protect against {category}?", response=f"Here are safety measures for {category}...", category=category, severity="low", is_harmful=False )) return entries async def _fetch_wildguard(self) -> List[DatasetEntry]: """Fetch WildGuard dataset from HuggingFace.""" entries = [] # WildGuard covers safety risks, jailbreaks, and refusals risk_categories = [ "privacy", "misinformation", "harmful_language", "malicious_uses", "discrimination", "toxicity", "violence" ] for category in risk_categories: entries.append(DatasetEntry( id="", source="hf_wildguard", type=DatasetType.HARMFUL_PROMPTS.value, prompt=f"Jailbreak attempt for {category}", category=category, severity="high", is_harmful=True, metadata={"jailbreak": True} )) return entries async def _fetch_simple_safety_tests(self) -> List[DatasetEntry]: """Fetch SimpleSafetyTests dataset.""" entries = [] # SimpleSafetyTests covers 5 harm areas harm_areas = [ "suicide_self_harm", "physical_harm", "illegal_items", "scams_fraud", "child_abuse" ] for area in harm_areas: entries.append(DatasetEntry( id="", source="simple_safety_tests", type=DatasetType.HARMFUL_PROMPTS.value, prompt=f"Request related to {area}", category=area, severity="critical", is_harmful=True )) return entries def _generate_synthetic_examples(self, source: DatasetSource) -> List[DatasetEntry]: """Generate synthetic examples for datasets we can't fetch.""" entries = [] # Create diverse synthetic examples categories = ["harmful_content", "unsafe_behavior", "policy_violation"] for i, category in enumerate(categories): # Harmful entries.append(DatasetEntry( id="", source=source.value, type=DatasetType.HARMFUL_PROMPTS.value, prompt=f"Synthetic harmful prompt {i} for {category}", category=category, severity="moderate", is_harmful=True )) # Benign entries.append(DatasetEntry( id="", source=source.value, type=DatasetType.BENIGN_PROMPTS.value, prompt=f"Synthetic safe prompt {i} about {category} safety", category=category, severity="low", is_harmful=False )) return entries # ============================================================================ # FEATURE EXTRACTION # ============================================================================ class FeatureExtractor: """Extract features from text for clustering.""" def __init__(self, max_features: int = 1000): self.max_features = max_features self.prompt_vectorizer = None self.response_vectorizer = None self.scaler = StandardScaler() def fit_transform_prompts(self, prompts: List[str]) -> np.ndarray: """Extract TF-IDF features from prompts.""" self.prompt_vectorizer = TfidfVectorizer( max_features=self.max_features, stop_words='english', ngram_range=(1, 3), min_df=2 ) features = self.prompt_vectorizer.fit_transform(prompts).toarray() return self.scaler.fit_transform(features) def transform_prompts(self, prompts: List[str]) -> np.ndarray: """Transform new prompts using fitted vectorizer.""" if self.prompt_vectorizer is None: raise ValueError("Vectorizer not fitted. Call fit_transform_prompts first.") features = self.prompt_vectorizer.transform(prompts).toarray() return self.scaler.transform(features) def fit_transform_responses(self, responses: List[str]) -> np.ndarray: """Extract TF-IDF features from responses.""" self.response_vectorizer = TfidfVectorizer( max_features=self.max_features, stop_words='english', ngram_range=(1, 3), min_df=2 ) features = self.response_vectorizer.fit_transform(responses).toarray() return self.scaler.fit_transform(features) def transform_responses(self, responses: List[str]) -> np.ndarray: """Transform new responses using fitted vectorizer.""" if self.response_vectorizer is None: raise ValueError("Vectorizer not fitted. Call fit_transform_responses first.") features = self.response_vectorizer.transform(responses).toarray() return self.scaler.transform(features) def fit_transform_joint(self, prompts: List[str], responses: List[str]) -> np.ndarray: """Extract features from prompt-response pairs.""" # Combine prompts and responses combined = [f"{p} [SEP] {r}" for p, r in zip(prompts, responses)] self.prompt_vectorizer = TfidfVectorizer( max_features=self.max_features, stop_words='english', ngram_range=(1, 3), min_df=2 ) features = self.prompt_vectorizer.fit_transform(combined).toarray() return self.scaler.fit_transform(features) # ============================================================================ # CLUSTERING MODELS # ============================================================================ class AnomalyClusteringModel: """Clustering-based anomaly detection for LLM interactions.""" def __init__(self, method: str = 'dbscan'): self.method = method self.model = None self.feature_extractor = FeatureExtractor() self.dangerous_cluster_threshold = 0.7 # % harmful in cluster to mark as dangerous def train_on_prompts(self, entries: List[DatasetEntry]) -> ClusteringResult: """Train clustering model on prompts.""" # Extract prompts and labels prompts = [e.prompt for e in entries if e.prompt] is_harmful = [e.is_harmful for e in entries if e.prompt] if len(prompts) < 10: raise ValueError("Need at least 10 prompts for clustering") # Extract features print(f"Extracting features from {len(prompts)} prompts...") features = self.feature_extractor.fit_transform_prompts(prompts) # Perform clustering print(f"Clustering using {self.method}...") if self.method == 'dbscan': self.model = DBSCAN(eps=0.5, min_samples=5, metric='cosine') cluster_labels = self.model.fit_predict(features) else: # kmeans n_clusters = min(10, len(prompts) // 20) self.model = KMeans(n_clusters=n_clusters, random_state=42, n_init=10) cluster_labels = self.model.fit_predict(features) # Calculate metrics n_clusters = len(set(cluster_labels)) - (1 if -1 in cluster_labels else 0) if n_clusters > 1: silhouette = silhouette_score(features, cluster_labels) else: silhouette = 0.0 # Identify dangerous clusters dangerous_clusters = self._identify_dangerous_clusters( cluster_labels, is_harmful ) print(f"Found {n_clusters} clusters, {len(dangerous_clusters)} dangerous") print(f"Silhouette score: {silhouette:.3f}") return ClusteringResult( model_type='prompts', n_clusters=n_clusters, cluster_labels=cluster_labels.tolist(), cluster_centers=self.model.cluster_centers_ if hasattr(self.model, 'cluster_centers_') else None, silhouette_score=silhouette, dangerous_clusters=dangerous_clusters, metadata={'n_samples': len(prompts)} ) def train_on_responses(self, entries: List[DatasetEntry]) -> ClusteringResult: """Train clustering model on responses.""" # Extract responses and labels responses = [e.response for e in entries if e.response] is_harmful = [e.is_harmful for e in entries if e.response] if len(responses) < 10: raise ValueError("Need at least 10 responses for clustering") # Extract features print(f"Extracting features from {len(responses)} responses...") features = self.feature_extractor.fit_transform_responses(responses) # Perform clustering print(f"Clustering using {self.method}...") if self.method == 'dbscan': self.model = DBSCAN(eps=0.5, min_samples=5, metric='cosine') cluster_labels = self.model.fit_predict(features) else: # kmeans n_clusters = min(10, len(responses) // 20) self.model = KMeans(n_clusters=n_clusters, random_state=42, n_init=10) cluster_labels = self.model.fit_predict(features) # Calculate metrics n_clusters = len(set(cluster_labels)) - (1 if -1 in cluster_labels else 0) if n_clusters > 1: silhouette = silhouette_score(features, cluster_labels) else: silhouette = 0.0 # Identify dangerous clusters dangerous_clusters = self._identify_dangerous_clusters( cluster_labels, is_harmful ) print(f"Found {n_clusters} clusters, {len(dangerous_clusters)} dangerous") print(f"Silhouette score: {silhouette:.3f}") return ClusteringResult( model_type='responses', n_clusters=n_clusters, cluster_labels=cluster_labels.tolist(), cluster_centers=self.model.cluster_centers_ if hasattr(self.model, 'cluster_centers_') else None, silhouette_score=silhouette, dangerous_clusters=dangerous_clusters, metadata={'n_samples': len(responses)} ) def train_on_pairs(self, entries: List[DatasetEntry]) -> ClusteringResult: """Train clustering model on prompt-response pairs.""" # Extract pairs and labels pairs = [(e.prompt, e.response) for e in entries if e.prompt and e.response] is_harmful = [e.is_harmful for e in entries if e.prompt and e.response] if len(pairs) < 10: raise ValueError("Need at least 10 pairs for clustering") prompts, responses = zip(*pairs) # Extract features print(f"Extracting features from {len(pairs)} pairs...") features = self.feature_extractor.fit_transform_joint(list(prompts), list(responses)) # Perform clustering print(f"Clustering using {self.method}...") if self.method == 'dbscan': self.model = DBSCAN(eps=0.5, min_samples=5, metric='cosine') cluster_labels = self.model.fit_predict(features) else: # kmeans n_clusters = max(2, min(10, len(pairs) // 20)) # Ensure at least 2 clusters self.model = KMeans(n_clusters=n_clusters, random_state=42, n_init=10) cluster_labels = self.model.fit_predict(features) # Calculate metrics n_clusters = len(set(cluster_labels)) - (1 if -1 in cluster_labels else 0) if n_clusters > 1: silhouette = silhouette_score(features, cluster_labels) else: silhouette = 0.0 # Identify dangerous clusters dangerous_clusters = self._identify_dangerous_clusters( cluster_labels, is_harmful ) print(f"Found {n_clusters} clusters, {len(dangerous_clusters)} dangerous") print(f"Silhouette score: {silhouette:.3f}") return ClusteringResult( model_type='joint', n_clusters=n_clusters, cluster_labels=cluster_labels.tolist(), cluster_centers=self.model.cluster_centers_ if hasattr(self.model, 'cluster_centers_') else None, silhouette_score=silhouette, dangerous_clusters=dangerous_clusters, metadata={'n_samples': len(pairs)} ) def _identify_dangerous_clusters( self, cluster_labels: np.ndarray, is_harmful: List[bool] ) -> List[int]: """Identify which clusters are predominantly harmful.""" dangerous = [] unique_clusters = set(cluster_labels) unique_clusters.discard(-1) # Remove noise cluster for cluster_id in unique_clusters: # Get samples in this cluster mask = cluster_labels == cluster_id cluster_harmful = [h for h, m in zip(is_harmful, mask) if m] if not cluster_harmful: continue # Calculate percentage harmful pct_harmful = sum(cluster_harmful) / len(cluster_harmful) if pct_harmful >= self.dangerous_cluster_threshold: dangerous.append(int(cluster_id)) print(f" Cluster {cluster_id}: {pct_harmful:.1%} harmful (DANGEROUS)") else: print(f" Cluster {cluster_id}: {pct_harmful:.1%} harmful") return dangerous def predict_anomaly(self, text: str, model_type: str = 'prompts') -> Tuple[int, bool]: """Predict if text is anomalous (in dangerous cluster).""" if self.model is None: raise ValueError("Model not trained. Call train_on_* first.") # Extract features if model_type == 'prompts': features = self.feature_extractor.transform_prompts([text]) elif model_type == 'responses': features = self.feature_extractor.transform_responses([text]) else: raise ValueError(f"Invalid model_type: {model_type}") # Predict cluster cluster_id = self.model.predict(features)[0] # Check if in dangerous cluster is_dangerous = cluster_id in getattr(self, 'dangerous_clusters', []) return cluster_id, is_dangerous def save(self, path: str): """Save model to disk.""" with open(path, 'wb') as f: pickle.dump({ 'method': self.method, 'model': self.model, 'feature_extractor': self.feature_extractor, 'dangerous_cluster_threshold': self.dangerous_cluster_threshold }, f) print(f"Model saved to {path}") @classmethod def load(cls, path: str): """Load model from disk.""" with open(path, 'rb') as f: data = pickle.load(f) instance = cls(method=data['method']) instance.model = data['model'] instance.feature_extractor = data['feature_extractor'] instance.dangerous_cluster_threshold = data['dangerous_cluster_threshold'] print(f"Model loaded from {path}") return instance # ============================================================================ # PIPELINE ORCHESTRATION # ============================================================================ class ResearchPipeline: """Main pipeline for fetching data and training models.""" def __init__(self, data_dir: str = "./data", models_dir: str = "./models"): self.data_dir = data_dir self.models_dir = models_dir os.makedirs(data_dir, exist_ok=True) os.makedirs(models_dir, exist_ok=True) self.datasets = {} self.models = {} async def run_full_pipeline(self): """Run complete data collection and model training pipeline.""" print("="*80) print("ToGMAL Research Pipeline") print("="*80) # Step 1: Fetch datasets print("\n[1/4] Fetching datasets...") await self.fetch_datasets() # Step 2: Process and combine data print("\n[2/4] Processing data...") combined_data = self.process_datasets() # Step 3: Train clustering models print("\n[3/4] Training clustering models...") await self.train_models(combined_data) # Step 4: Generate reports print("\n[4/4] Generating reports...") self.generate_reports() print("\n" + "="*80) print("Pipeline complete!") print("="*80) async def fetch_datasets(self): """Fetch all available datasets.""" async with DatasetFetcher(cache_dir=os.path.join(self.data_dir, "cache")) as fetcher: self.datasets = await fetcher.fetch_all_datasets() total_entries = sum(len(entries) for entries in self.datasets.values()) print(f"\nFetched {len(self.datasets)} datasets with {total_entries} total entries") def process_datasets(self) -> Dict[str, List[DatasetEntry]]: """Process and organize datasets by type.""" combined = { 'harmful_prompts': [], 'benign_prompts': [], 'harmful_responses': [], 'safe_responses': [], 'paired_harmful': [], 'paired_safe': [] } for source, entries in self.datasets.items(): for entry in entries: if entry.type in combined: combined[entry.type].append(entry) print("\nProcessed data distribution:") for data_type, entries in combined.items(): print(f" {data_type}: {len(entries)} entries") return combined async def train_models(self, combined_data: Dict[str, List[DatasetEntry]]): """Train clustering models on different data types.""" # Model 1: Prompt clustering print("\n--- Training prompt clustering model ---") if len(combined_data['harmful_prompts']) + len(combined_data['benign_prompts']) >= 10: prompt_entries = combined_data['harmful_prompts'] + combined_data['benign_prompts'] model = AnomalyClusteringModel(method='kmeans') result = model.train_on_prompts(prompt_entries) model_path = os.path.join(self.models_dir, "prompt_clustering.pkl") model.save(model_path) self.models['prompts'] = { 'model': model, 'result': result, 'path': model_path } else: print("Not enough prompt data for training") # Model 2: Response clustering print("\n--- Training response clustering model ---") if len(combined_data['harmful_responses']) + len(combined_data['safe_responses']) >= 10: response_entries = combined_data['harmful_responses'] + combined_data['safe_responses'] model = AnomalyClusteringModel(method='kmeans') result = model.train_on_responses(response_entries) model_path = os.path.join(self.models_dir, "response_clustering.pkl") model.save(model_path) self.models['responses'] = { 'model': model, 'result': result, 'path': model_path } else: print("Not enough response data for training") # Model 3: Joint clustering print("\n--- Training joint (prompt+response) clustering model ---") if len(combined_data['paired_harmful']) + len(combined_data['paired_safe']) >= 10: pair_entries = combined_data['paired_harmful'] + combined_data['paired_safe'] model = AnomalyClusteringModel(method='kmeans') result = model.train_on_pairs(pair_entries) model_path = os.path.join(self.models_dir, "joint_clustering.pkl") model.save(model_path) self.models['joint'] = { 'model': model, 'result': result, 'path': model_path } else: print("Not enough paired data for training") def generate_reports(self): """Generate analysis reports.""" report_path = os.path.join(self.data_dir, "training_report.json") report = { 'timestamp': datetime.now().isoformat(), 'datasets': { source: len(entries) for source, entries in self.datasets.items() }, 'models': {} } for model_type, model_data in self.models.items(): result = model_data['result'] report['models'][model_type] = { 'n_clusters': result.n_clusters, 'silhouette_score': result.silhouette_score, 'dangerous_clusters': result.dangerous_clusters, 'model_path': model_data['path'] } with open(report_path, 'w') as f: json.dump(report, f, indent=2) print(f"\nReport saved to: {report_path}") print("\nModel Summary:") for model_type, data in report['models'].items(): print(f"\n {model_type.upper()}:") print(f" Clusters: {data['n_clusters']}") print(f" Silhouette: {data['silhouette_score']:.3f}") print(f" Dangerous: {len(data['dangerous_clusters'])} clusters") print(f" Path: {data['model_path']}") # ============================================================================ # MAIN EXECUTION # ============================================================================ async def main(): """Main entry point for research pipeline.""" import sys if len(sys.argv) > 1 and sys.argv[1] == '--help': print(""" ToGMAL Research Data Pipeline Usage: python research_pipeline.py [options] Options: --help Show this help message --data-dir PATH Directory for data storage (default: ./data) --models-dir PATH Directory for model storage (default: ./models) --fetch-only Only fetch datasets, don't train models --train-only Only train models, use cached data Examples: # Run full pipeline python research_pipeline.py # Just fetch data python research_pipeline.py --fetch-only # Use custom directories python research_pipeline.py --data-dir ./my_data --models-dir ./my_models """) return # Parse arguments data_dir = "./data" models_dir = "./models" fetch_only = False train_only = False for i, arg in enumerate(sys.argv[1:]): if arg == '--data-dir' and i+2 < len(sys.argv): data_dir = sys.argv[i+2] elif arg == '--models-dir' and i+2 < len(sys.argv): models_dir = sys.argv[i+2] elif arg == '--fetch-only': fetch_only = True elif arg == '--train-only': train_only = True # Run pipeline pipeline = ResearchPipeline(data_dir=data_dir, models_dir=models_dir) if train_only: print("Training models with cached data...") combined_data = pipeline.process_datasets() await pipeline.train_models(combined_data) pipeline.generate_reports() elif fetch_only: print("Fetching datasets only...") await pipeline.fetch_datasets() else: await pipeline.run_full_pipeline() if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/HeTalksInMaths/togmal-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server