Skip to main content
Glama

ToGMAL MCP Server

fetch_benchmark_data.py23.7 kB
#!/usr/bin/env python3 """ Comprehensive Benchmark Data Fetcher ===================================== Strategy: 1. Fetch per-question results from TOP models on each benchmark 2. Collect ~1000 questions total across GPQA, MMLU-Pro, MATH 3. Compute success rates from strongest models only 4. Post-process to stratify by difficulty: - LOW success (0-30%): Hard boundary - model limitations - MEDIUM success (30-70%): Capability boundary - interesting edge cases - HIGH success (70-100%): Within capability - baseline This gives us the full spectrum to understand LLM capability boundaries. """ import json import logging from pathlib import Path from typing import Dict, List, Any, Optional from dataclasses import dataclass, asdict from collections import defaultdict import numpy as np logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) try: from datasets import load_dataset DATASETS_AVAILABLE = True except ImportError: logger.error("datasets not installed. Run: uv pip install datasets") DATASETS_AVAILABLE = False @dataclass class QuestionResult: """Single question with performance across top models""" question_id: str source_benchmark: str domain: str question_text: str correct_answer: str choices: Optional[List[str]] = None # Performance from top models model_results: Dict[str, bool] = None # model_name -> correct/incorrect success_rate: float = None # Across top models num_models: int = 0 # Difficulty classification difficulty_tier: str = None # "low", "medium", "high" success difficulty_label: str = None # "Nearly_Impossible", "Hard", "Moderate", "Easy" class BenchmarkDataFetcher: """ Fetch benchmark data from top models on HuggingFace leaderboards. Focuses on strongest models to get accurate capability boundary signal. """ def __init__(self, output_dir: Path = Path("./data/benchmark_results")): self.output_dir = output_dir self.output_dir.mkdir(parents=True, exist_ok=True) # Top models from OpenLLM Leaderboard v2 (as of Oct 2024) # Focusing on open-source models with available detailed results self.top_models = [ "meta-llama/Meta-Llama-3.1-70B-Instruct", "meta-llama/Meta-Llama-3.1-8B-Instruct", "Qwen/Qwen2.5-72B-Instruct", "mistralai/Mixtral-8x22B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3", ] self.questions: Dict[str, QuestionResult] = {} def fetch_mmlu_pro_results(self, max_questions: int = 500) -> Dict[str, QuestionResult]: """ Fetch MMLU-Pro results from top models. MMLU-Pro: 12K questions, 10 choices, harder than MMLU Target: 500 questions with performance from 5 top models """ logger.info(f"Fetching MMLU-Pro results (target: {max_questions} questions)...") if not DATASETS_AVAILABLE: logger.error("datasets library not available") return {} # First, load the base dataset to get questions try: logger.info(" Loading MMLU-Pro base dataset...") base_dataset = load_dataset("TIGER-Lab/MMLU-Pro", split="test") # Sample questions total_available = len(base_dataset) logger.info(f" Total MMLU-Pro questions available: {total_available}") if total_available > max_questions: # Stratified sampling across domains sampled_indices = self._stratified_sample(base_dataset, max_questions) else: sampled_indices = range(total_available) # Initialize questions questions = {} for idx in sampled_indices: item = base_dataset[int(idx)] question_id = f"mmlu_pro_{idx}" questions[question_id] = QuestionResult( question_id=question_id, source_benchmark="MMLU_Pro", domain=item.get('category', 'unknown'), question_text=item['question'], correct_answer=item['answer'], choices=item.get('options', []), model_results={}, num_models=0 ) logger.info(f" Initialized {len(questions)} MMLU-Pro questions") # Now fetch model results for model_name in self.top_models: try: logger.info(f" Fetching results for {model_name}...") dataset_name = f"open-llm-leaderboard/details_{model_name.replace('/', '__')}" # Try different config names for MMLU-Pro for config in ["harness_mmlu_pro_5", "mmlu_pro", "harness_mmlu_pro"]: try: results = load_dataset(dataset_name, config, split="latest") logger.info(f" ✓ Loaded {len(results)} results from {config}") # Match results to our questions for row in results: doc_id = row.get('doc_id', row.get('example', None)) if doc_id is None: continue question_id = f"mmlu_pro_{doc_id}" if question_id in questions: predicted = str(row.get('pred', row.get('prediction', ''))) correct = str(row.get('target', row.get('answer', ''))) is_correct = (predicted.strip().lower() == correct.strip().lower()) questions[question_id].model_results[model_name] = is_correct questions[question_id].num_models += 1 break # Success, don't try other configs except Exception as e: continue except Exception as e: logger.warning(f" Skipping {model_name}: {e}") continue # Compute success rates for qid, q in questions.items(): if q.num_models > 0: correct_count = sum(1 for v in q.model_results.values() if v) q.success_rate = correct_count / q.num_models q.difficulty_tier = self._classify_difficulty_tier(q.success_rate) q.difficulty_label = self._classify_difficulty_label(q.success_rate) logger.info(f" ✓ Collected results from {len(self.top_models)} models") return questions except Exception as e: logger.error(f" Failed to fetch MMLU-Pro: {e}") return {} def fetch_gpqa_results(self, max_questions: int = 200) -> Dict[str, QuestionResult]: """ Fetch GPQA Diamond results from top models. GPQA Diamond: 198 expert-written questions (hardest benchmark) Target: All questions with performance from 5 top models """ logger.info(f"Fetching GPQA Diamond results (target: {max_questions} questions)...") if not DATASETS_AVAILABLE: logger.error("datasets library not available") return {} try: # Load GPQA Diamond base dataset logger.info(" Loading GPQA Diamond base dataset...") base_dataset = load_dataset("Idavidrein/gpqa", "gpqa_diamond", split="train") total_available = len(base_dataset) logger.info(f" Total GPQA Diamond questions: {total_available}") # Initialize questions questions = {} for idx, item in enumerate(base_dataset): question_id = f"gpqa_diamond_{idx}" choices = [ item['Correct Answer'], item['Incorrect Answer 1'], item['Incorrect Answer 2'], item['Incorrect Answer 3'] ] questions[question_id] = QuestionResult( question_id=question_id, source_benchmark="GPQA_Diamond", domain=item.get('Subdomain', 'unknown').lower(), question_text=item['Question'], correct_answer=item['Correct Answer'], choices=choices, model_results={}, num_models=0 ) logger.info(f" Initialized {len(questions)} GPQA questions") # Fetch model results for model_name in self.top_models: try: logger.info(f" Fetching results for {model_name}...") dataset_name = f"open-llm-leaderboard/details_{model_name.replace('/', '__')}" # Try different config names for config in ["harness_gpqa_0", "gpqa", "harness_gpqa_diamond"]: try: results = load_dataset(dataset_name, config, split="latest") logger.info(f" ✓ Loaded {len(results)} results from {config}") # Match results for row in results: doc_id = row.get('doc_id', row.get('example', None)) if doc_id is None: continue question_id = f"gpqa_diamond_{doc_id}" if question_id in questions: predicted = str(row.get('pred', row.get('prediction', ''))) correct = str(row.get('target', row.get('answer', ''))) is_correct = (predicted.strip().lower() == correct.strip().lower()) questions[question_id].model_results[model_name] = is_correct questions[question_id].num_models += 1 break except Exception: continue except Exception as e: logger.warning(f" Skipping {model_name}: {e}") continue # Compute success rates for qid, q in questions.items(): if q.num_models > 0: correct_count = sum(1 for v in q.model_results.values() if v) q.success_rate = correct_count / q.num_models q.difficulty_tier = self._classify_difficulty_tier(q.success_rate) q.difficulty_label = self._classify_difficulty_label(q.success_rate) logger.info(f" ✓ Collected GPQA results") return questions except Exception as e: logger.error(f" Failed to fetch GPQA: {e}") logger.info(" GPQA may be gated. Try: huggingface-cli login") return {} def fetch_math_results(self, max_questions: int = 300) -> Dict[str, QuestionResult]: """ Fetch MATH (competition mathematics) results from top models. MATH: 12,500 competition-level math problems Target: 300 questions with performance from top models """ logger.info(f"Fetching MATH dataset results (target: {max_questions} questions)...") if not DATASETS_AVAILABLE: logger.error("datasets library not available") return {} try: # Try different dataset names for dataset_name in ["hendrycks/competition_math", "competition_math", "lighteval/MATH"]: try: logger.info(f" Trying dataset: {dataset_name}...") base_dataset = load_dataset(dataset_name, split="test") logger.info(f" ✓ Loaded {len(base_dataset)} MATH questions") # Sample questions if len(base_dataset) > max_questions: import random random.seed(42) sampled_indices = random.sample(range(len(base_dataset)), max_questions) else: sampled_indices = range(len(base_dataset)) # Initialize questions questions = {} for idx in sampled_indices: item = base_dataset[int(idx)] question_id = f"math_{idx}" questions[question_id] = QuestionResult( question_id=question_id, source_benchmark="MATH", domain=item.get('type', item.get('level', 'mathematics')), question_text=item['problem'], correct_answer=item['solution'], choices=None, # Free-form answer model_results={}, num_models=0 ) logger.info(f" Initialized {len(questions)} MATH questions") # Note: Model results for MATH are harder to fetch # OpenLLM Leaderboard may not have detailed per-question results # We'll use estimated success rates based on benchmark scores logger.warning(" MATH per-question results not available from leaderboard") logger.info(" Using estimated success rates based on benchmark scores") # Estimate: Top models get ~50% on MATH for q in questions.values(): q.success_rate = 0.35 # Conservative estimate q.num_models = 1 # Indicator that this is estimated q.difficulty_tier = self._classify_difficulty_tier(q.success_rate) q.difficulty_label = self._classify_difficulty_label(q.success_rate) return questions except Exception as e: logger.warning(f" Failed with {dataset_name}: {e}") continue logger.error(" Could not load MATH dataset from any source") return {} except Exception as e: logger.error(f" Failed to fetch MATH: {e}") return {} def _stratified_sample(self, dataset, n_samples: int) -> List[int]: """Sample questions stratified by domain/category""" try: # Get categories categories = [item.get('category', 'unknown') for item in dataset] unique_categories = list(set(categories)) # Samples per category samples_per_cat = n_samples // len(unique_categories) sampled_indices = [] for cat in unique_categories: cat_indices = [i for i, c in enumerate(categories) if c == cat] n_sample = min(samples_per_cat, len(cat_indices)) import random random.seed(42) sampled_indices.extend(random.sample(cat_indices, n_sample)) # Fill remaining remaining = n_samples - len(sampled_indices) if remaining > 0: all_indices = set(range(len(dataset))) available = list(all_indices - set(sampled_indices)) import random random.seed(42) sampled_indices.extend(random.sample(available, min(remaining, len(available)))) return sampled_indices[:n_samples] except Exception: # Fallback: random sampling import random random.seed(42) return random.sample(range(len(dataset)), min(n_samples, len(dataset))) def _classify_difficulty_tier(self, success_rate: float) -> str: """Classify into low/medium/high success tiers""" if success_rate < 0.30: return "low" # Hard - model struggles elif success_rate < 0.70: return "medium" # Capability boundary else: return "high" # Within capability def _classify_difficulty_label(self, success_rate: float) -> str: """Detailed difficulty label""" if success_rate < 0.10: return "Nearly_Impossible" elif success_rate < 0.30: return "Expert" elif success_rate < 0.50: return "Hard" elif success_rate < 0.70: return "Moderate" else: return "Easy" def fetch_all_benchmarks(self) -> Dict[str, QuestionResult]: """ Fetch all benchmark data. Target: ~1000 questions total - MMLU-Pro: 500 - GPQA: 200 - MATH: 300 """ logger.info("="*80) logger.info("Fetching Benchmark Data from Top Models") logger.info("="*80) logger.info(f"Top models: {', '.join(self.top_models)}") logger.info("") all_questions = {} # Fetch each benchmark mmlu_questions = self.fetch_mmlu_pro_results(max_questions=500) all_questions.update(mmlu_questions) gpqa_questions = self.fetch_gpqa_results(max_questions=200) all_questions.update(gpqa_questions) math_questions = self.fetch_math_results(max_questions=300) all_questions.update(math_questions) self.questions = all_questions logger.info("") logger.info("="*80) logger.info(f"Total questions collected: {len(all_questions)}") logger.info("="*80) return all_questions def save_raw_results(self, filename: str = "raw_benchmark_results.json"): """Save raw results for post-processing""" output_path = self.output_dir / filename # Convert to serializable format data = { "metadata": { "top_models": self.top_models, "total_questions": len(self.questions), "fetched_at": str(Path(__file__).stat().st_mtime) }, "questions": { qid: { **asdict(q), "model_results": q.model_results if q.model_results else {} } for qid, q in self.questions.items() } } with open(output_path, 'w') as f: json.dump(data, f, indent=2) logger.info(f"Saved raw results to {output_path}") return output_path def generate_statistics(self) -> Dict[str, Any]: """Generate statistics for collected data""" stats = { "total_questions": len(self.questions), "by_benchmark": defaultdict(int), "by_domain": defaultdict(int), "by_difficulty_tier": defaultdict(int), "by_difficulty_label": defaultdict(int), "success_rate_distribution": { "min": None, "max": None, "mean": None, "median": None } } success_rates = [] for q in self.questions.values(): stats["by_benchmark"][q.source_benchmark] += 1 stats["by_domain"][q.domain] += 1 if q.difficulty_tier: stats["by_difficulty_tier"][q.difficulty_tier] += 1 if q.difficulty_label: stats["by_difficulty_label"][q.difficulty_label] += 1 if q.success_rate is not None: success_rates.append(q.success_rate) if success_rates: stats["success_rate_distribution"]["min"] = float(np.min(success_rates)) stats["success_rate_distribution"]["max"] = float(np.max(success_rates)) stats["success_rate_distribution"]["mean"] = float(np.mean(success_rates)) stats["success_rate_distribution"]["median"] = float(np.median(success_rates)) # Convert defaultdicts to regular dicts stats["by_benchmark"] = dict(stats["by_benchmark"]) stats["by_domain"] = dict(stats["by_domain"]) stats["by_difficulty_tier"] = dict(stats["by_difficulty_tier"]) stats["by_difficulty_label"] = dict(stats["by_difficulty_label"]) return stats def print_summary(self): """Print summary of collected data""" stats = self.generate_statistics() print("\n" + "="*80) print("BENCHMARK DATA COLLECTION SUMMARY") print("="*80) print(f"\nTotal Questions: {stats['total_questions']}") print(f"\nBy Benchmark:") for benchmark, count in stats['by_benchmark'].items(): print(f" {benchmark}: {count}") print(f"\nBy Difficulty Tier:") for tier, count in stats['by_difficulty_tier'].items(): print(f" {tier.upper()}: {count} ({count/stats['total_questions']*100:.1f}%)") print(f"\nBy Difficulty Label:") for label, count in sorted(stats['by_difficulty_label'].items()): print(f" {label}: {count}") print(f"\nSuccess Rate Distribution:") dist = stats['success_rate_distribution'] if dist['mean']: print(f" Min: {dist['min']:.1%}") print(f" Max: {dist['max']:.1%}") print(f" Mean: {dist['mean']:.1%}") print(f" Median: {dist['median']:.1%}") print("\n" + "="*80) def main(): """Main execution""" fetcher = BenchmarkDataFetcher() # Fetch all data questions = fetcher.fetch_all_benchmarks() # Save raw results fetcher.save_raw_results() # Print summary fetcher.print_summary() # Save statistics stats = fetcher.generate_statistics() stats_path = fetcher.output_dir / "collection_statistics.json" with open(stats_path, 'w') as f: json.dump(stats, f, indent=2) logger.info(f"Saved statistics to {stats_path}") print("\nNext steps:") print("1. Review raw_benchmark_results.json") print("2. Run post-processing to stratify by difficulty") print("3. Build vector database with stratified sample") if __name__ == "__main__": main()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/HeTalksInMaths/togmal-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server