Skip to main content
Glama

cloudwatch-get_metric_statistics

Retrieve CloudWatch metric statistics to monitor AWS resources like EC2, RDS, and Lambda functions with customizable time ranges, dimensions, and statistical calculations.

Instructions

Retrieve CloudWatch metric statistics with full configurability for monitoring AWS resources. This tool fetches time-series data points for CloudWatch metrics, supporting custom statistics, dimensions, and time ranges. Essential for monitoring EC2 instances, RDS databases, Lambda functions, and other AWS services. **Required Parameters:** - profile_name (str): AWS profile name from ~/.aws/credentials - region (str): AWS region (e.g., 'us-east-1', 'eu-west-1') - metric_name (str): CloudWatch metric name (e.g., 'CPUUtilization', 'NetworkIn', 'DatabaseConnections') - namespace (str): AWS service namespace (e.g., 'AWS/EC2', 'AWS/RDS', 'AWS/Lambda') - start_time (str): Start time in ISO 8601 format (e.g., '2024-01-01T00:00:00Z') - end_time (str): End time in ISO 8601 format (e.g., '2024-01-02T00:00:00Z') - period (int): Data point interval in seconds (60, 300, 3600, etc. - must align with metric resolution) **Optional Parameters:** - statistics (List[str]): Standard statistics to calculate. Default: ['Average'] Options: 'Average', 'Sum', 'SampleCount', 'Maximum', 'Minimum' Example: ['Average', 'Maximum'] for CPU utilization trends - extended_statistics (List[str]): Percentile statistics for detailed analysis Format: 'p{percentile}' (e.g., 'p99', 'p95', 'p90', 'p50') Example: ['p99', 'p95'] for latency analysis - dimensions (List[Dict[str, str]]): Filter metrics by specific resource attributes Common dimension examples: * EC2: [{'Name': 'InstanceId', 'Value': 'i-1234567890abcdef0'}] * RDS: [{'Name': 'DBInstanceIdentifier', 'Value': 'mydb-instance'}] * Lambda: [{'Name': 'FunctionName', 'Value': 'my-function'}] * ELB: [{'Name': 'LoadBalancerName', 'Value': 'my-load-balancer'}] - unit (str): Expected unit of measurement for validation Common units: 'Seconds', 'Percent', 'Count', 'Bytes', 'Bits/Second' **Common Use Cases:** 1. Monitor EC2 CPU: namespace='AWS/EC2', metric_name='CPUUtilization', statistics=['Average', 'Maximum'] 2. Track RDS connections: namespace='AWS/RDS', metric_name='DatabaseConnections', statistics=['Average'] 3. Lambda duration analysis: namespace='AWS/Lambda', metric_name='Duration', extended_statistics=['p99', 'p95'] 4. ELB response times: namespace='AWS/ELB', metric_name='Latency', extended_statistics=['p95', 'p99'] **Time Range Guidelines:** - For high-resolution metrics: Use 60-second periods, max 3 hours of data - For standard metrics: Use 300-second periods, up to 15 days of data - For long-term analysis: Use 3600-second periods, up to 455 days of data Returns detailed metric data points with timestamps, values, and units for analysis and alerting.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
profile_nameYes
regionYes
metric_nameYes
namespaceYes
start_timeYes
end_timeYes
periodYes
statisticsNo
extended_statisticsNo
dimensionsNo
unitNo

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Havoc24k/aws-sa-tools-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server