Skip to main content
Glama

Continuo Memory System

Persistent memory and hierarchical compression for development environments

Python 3.9+ License: AGPL v3 Commercial License MCP Protocol

Overview

Continuo is a persistent memory system that provides semantic search and storage capabilities for development workflows. By separating reasoning (LLM) from long-term memory (Vector DB + hierarchical compression), the system maintains knowledge indefinitely, circumventing context window limitations.

Key Features

  • Persistent Memory - Store and retrieve development knowledge across sessions

  • Semantic Search - Find relevant information using natural language queries

  • Hierarchical Compression - N0 (chunks) → N1 (summaries) → N2 (meta-summaries)

  • MCP Integration - Seamless integration with IDEs via Model Context Protocol

  • Cost Effective - 100% local (free) or hybrid (low-cost) deployment options

  • FastMCP - Built on the modern MCP server framework

Quick Start

Installation

git clone https://github.com/GtOkAi/continuo-memory-mcp-memory-mcp.git cd continuo ./scripts/setup_memory.sh

Usage

  1. Start the memory server:

./scripts/run_memory_server.sh
  1. Configure your IDE (Qoder/Cursor):

Create .qoder/mcp.json (or .cursor/mcp.json):

{ "mcpServers": { "continuo-memory": { "command": "/absolute/path/to/continuo/venv_memory/bin/python", "args": [ "/absolute/path/to/continuo/src/mcp/memory/mcp_memory_server.py", "--provider", "local", "--db-path", "/absolute/path/to/memory_db" ] } } }
  1. Use in your IDE:

@continuo-memory search_memory("authentication implementation") @continuo-memory store_memory("Fixed JWT validation bug", {"file": "auth.py"}) @continuo-memory get_memory_stats()

Architecture

IDE Chat ──► MCP Adapter ──► Memory Server ──► ChromaDB ▲ ▲ │ │ │ └──── tools ◄─────┘ │ └───── response ◄──── context ◄───────────────┘

Components

  • Memory Server - ChromaDB + sentence-transformers for embeddings

  • MCP Adapter - FastMCP server exposing search_memory and store_memory tools

  • Hierarchical Compression - Multi-level context optimization (N0/N1/N2)

  • Autonomous Mode - Optional automation with Observe → Plan → Act → Reflect cycle

Configuration

Local Embeddings (Free)

python src/mcp/memory/mcp_memory_server.py \ --provider local \ --db-path ./memory_db

OpenAI Embeddings (Low-cost)

python src/mcp/memory/mcp_memory_server.py \ --provider openai \ --api-key sk-your-key \ --db-path ./memory_db

API

Tools

search_memory(query: str, top_k: int = 5, level: str | None = None) -> str

  • Semantic search in persistent memory

  • Returns relevant documents with similarity scores

store_memory(text: str, metadata: dict | None = None, level: str = "N0") -> str

  • Store content in persistent memory

  • Supports metadata tagging and hierarchical levels

get_memory_stats() -> str

  • Get memory statistics (total documents, levels, etc.)

Hierarchical Levels

  • N0 - Raw chunks (code snippets, conversations)

  • N1 - Micro-summaries (5-10 chunks compressed)

  • N2 - Meta-summaries (5-10 summaries compressed)

Examples

See the examples/memory/ directory:

  • basic_usage.py - Simple store/retrieve operations

  • hierarchical_demo.py - Multi-level compression examples

  • auto_mode_demo.py - Autonomous mode demonstration

Documentation

Technology Stack

  • Python 3.9+ - Core implementation

  • ChromaDB - Vector database for embeddings

  • Sentence Transformers - Local embedding generation (all-MiniLM-L6-v2)

  • FastMCP - MCP server framework

  • Model Context Protocol - IDE integration standard

Cost & Licensing

Embedding Providers

Provider

Storage

Search

Monthly (1000 queries)

Local (sentence-transformers)

Free

Free

$0

OpenAI embeddings

Free

~$0.0001/query

~$0.10

Software License

Use Case

License

Cost

Individual/Research

AGPL v3

Free

Startup (<$1M, <10 employees)

AGPL v3

Free

Non-profit/Education

AGPL v3

Free

Commercial (≥$1M OR ≥10 employees)

Commercial

From $2,500/year

See COMMERCIAL_LICENSE.md for details.

Contributing

Contributions are welcome! Please read CONTRIBUTING.md for guidelines.

License

Continuo Memory System is dual-licensed:

📖 Open Source (AGPL v3)

FREE for:

  • ✅ Individual developers and researchers

  • ✅ Non-profit organizations and educational institutions

  • ✅ Companies with <$1M revenue AND <10 employees

  • ✅ Development, testing, and evaluation

  • ✅ Open source projects (AGPL-compatible)

Requirements: Share source code of modifications under AGPL v3

See LICENSE for full AGPL v3 terms.

💼 Commercial License

REQUIRED for:

  • ❌ Companies with ≥$1M revenue OR ≥10 employees

  • ❌ Proprietary/closed-source products

  • ❌ SaaS offerings without source disclosure

Benefits:

  • ✅ No AGPL copyleft obligations

  • ✅ Proprietary use rights

  • ✅ Priority support (optional)

  • ✅ Custom deployment assistance (optional)

Pricing: From $2,500/year (Bronze) to custom Enterprise

See COMMERCIAL_LICENSE.md for pricing and details.

💡 Why AGPL + Commercial?

  • Sustainable Development: Commercial users fund ongoing maintenance

  • Open Source Protection: AGPL prevents proprietary forks

  • Fair Use: Small teams and non-profits use free indefinitely

  • Community First: Core features always open source

Contact: gustavo@shigoto.me for commercial inquiries

Acknowledgments

Built using:

Authors

  • D.D. & Gustavo Porto


Note: This project implements the architecture described in continuo.markdown. For academic context and detailed specifications, refer to that document.

-
security - not tested
F
license - not found
-
quality - not tested

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/GtOkAi/continuo-memory-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server