Skip to main content
Glama

Langflow Document Q&A Server

index.ts3.36 kB
#!/usr/bin/env node import { Server } from '@modelcontextprotocol/sdk/server/index.js'; import { StdioServerTransport } from '@modelcontextprotocol/sdk/server/stdio.js'; import { CallToolRequestSchema, ErrorCode, ListToolsRequestSchema, McpError, } from '@modelcontextprotocol/sdk/types.js'; import axios from 'axios'; interface QueryResponse { outputs: Array<{ outputs: Array<{ results: { message: { text: string; }; }; }>; }>; } class DocQAServer { private server: Server; private readonly apiEndpoint = process.env.API_ENDPOINT || 'http://127.0.0.1:7860/api/v1/run/480ec7b3-29d2-4caa-b03b-e74118f35fac'; constructor() { this.server = new Server( { name: 'doc-qa-server', version: '0.1.0', }, { capabilities: { tools: {}, }, } ); this.setupToolHandlers(); this.server.onerror = (error) => console.error('[MCP Error]', error); process.on('SIGINT', async () => { await this.server.close(); process.exit(0); }); } private setupToolHandlers() { this.server.setRequestHandler(ListToolsRequestSchema, async () => ({ tools: [ { name: 'query_docs', description: 'Query the document Q&A system with a prompt', inputSchema: { type: 'object', properties: { query: { type: 'string', description: 'The query prompt to search for in the documents', }, }, required: ['query'], }, }, ], })); this.server.setRequestHandler(CallToolRequestSchema, async (request) => { if (request.params.name !== 'query_docs') { throw new McpError( ErrorCode.MethodNotFound, `Unknown tool: ${request.params.name}` ); } const { query } = request.params.arguments as { query: string }; try { const response = await axios.post<QueryResponse>( this.apiEndpoint, { input_value: query, output_type: 'chat', input_type: 'chat', tweaks: { 'ChatInput-Jrzyb': {}, 'ChatOutput-rzoZb': {}, 'ParseData-hzL7Q': {}, 'File-2Teuj': {}, 'Prompt-ktajI': {}, 'MistralModel-aLZcw': {} } }, { headers: { 'Content-Type': 'application/json', }, params: { stream: false, }, } ); const result = response.data.outputs[0].outputs[0].results.message.text; return { content: [ { type: 'text', text: result, }, ], }; } catch (error) { if (axios.isAxiosError(error)) { throw new McpError( ErrorCode.InternalError, `API request failed: ${error.message}` ); } throw error; } }); } async run() { const transport = new StdioServerTransport(); await this.server.connect(transport); console.error('Document Q&A MCP server running on stdio'); } } const server = new DocQAServer(); server.run().catch(console.error);

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/GongRzhe/Langflow-DOC-QA-SERVER'

If you have feedback or need assistance with the MCP directory API, please join our Discord server