Skip to main content
Glama

Fibery MCP Server

Official
by Fibery-inc
create_entity.py3.6 kB
import os from uuid import uuid4 from typing import List, Dict, Any import mcp from fibery_mcp_server.fibery_client import FiberyClient from fibery_mcp_server.utils import create_entity_process_fields create_entity_tool_name = "create_entity" def create_entity_tool() -> mcp.types.Tool: with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), "descriptions", "create_entity"), "r") as file: description = file.read() return mcp.types.Tool( name=create_entity_tool_name, description=description, inputSchema={ "type": "object", "properties": { "database": { "type": "string", "description": "Fibery Database where to create an entity.", }, "entity": { "type": "object", "description": 'Dictionary that defines what fields to set in format {"FieldName": value} (i.e. {"Product Management/Name": "My new entity"}).', }, }, "required": ["database", "entity"], }, ) async def handle_create_entity(fibery_client: FiberyClient, arguments: Dict[str, Any]) -> List[mcp.types.TextContent]: database_name: str = arguments.get("database") entity: Dict[str, Any] = arguments.get("entity") if not database_name: return [mcp.types.TextContent(type="text", text="Error: database is not provided.")] if not entity: return [mcp.types.TextContent(type="text", text="Error: entity is not provided.")] schema = await fibery_client.get_schema() database = schema.databases_by_name()[database_name] if not database: return [mcp.types.TextContent(type="text", text=f"Error: database {database_name} was not found.")] rich_text_fields, safe_entity = await create_entity_process_fields(fibery_client, schema, database, entity) safe_entity["fibery/id"] = str(uuid4()) creation_result = await fibery_client.create_entity(database_name, safe_entity) if not creation_result.success: return [mcp.types.TextContent(type="text", text=str(creation_result))] if len(rich_text_fields) > 0: secrets_response = await fibery_client.query( { "q/from": database_name, "q/select": { field["name"]: [field["name"], "Collaboration~Documents/secret"] for field in rich_text_fields }, "q/limit": 1, "q/where": ["=", ["fibery/id"], "$id"], }, {"$id": safe_entity["fibery/id"]}, ) for field, secret_response in zip(rich_text_fields, secrets_response.result): secret = secret_response.get(field["name"], None) if not secret: return [ mcp.types.TextContent( type="text", text=f"Error: entity created, but could you populate document {field['name']}" ) ] doc_result = await fibery_client.create_or_update_document(secret, field["value"]) if not doc_result.success: return [mcp.types.TextContent(type="text", text=str(doc_result))] public_id = creation_result.result["fibery/public-id"] url = fibery_client.compose_url(database_name.split("/")[0], database_name.split("/")[1], public_id) return [ mcp.types.TextContent( type="text", text=str(f'Entity created successfully. fibery/id: "{safe_entity["fibery/id"]}" URL: "{url}"') ) ]

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Fibery-inc/fibery-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server