README.md•12.9 kB
# 🤖 Databricks MCP Server Template
Host Model Context Protocol (MCP) prompts and tools on Databricks Apps, enabling AI assistants like Claude to interact with your Databricks workspace through a secure, authenticated interface.
## What is this?
This template lets you create an MCP server that runs on Databricks Apps. You can:
- 📝 **Add prompts** as simple markdown files in the `prompts/` folder
- 🛠️ **Create tools** as Python functions that leverage Databricks SDK
- 🔐 **Authenticate securely** with OAuth through Databricks Apps
- 🚀 **Deploy instantly** to make your MCP server accessible to Claude
Think of it as a bridge between Claude and your Databricks workspace - you define what Claude can see and do, and this server handles the rest.
## How it Works
### Architecture Overview
```
┌─────────────┐ MCP Protocol ┌──────────────────┐ OAuth ┌─────────────────┐
│ Claude │ ◄─────────────────────► │ dba-mcp-proxy │ ◄──────────────────► │ Databricks App │
│ CLI │ (stdio/JSON-RPC) │ (local process) │ (HTTPS/SSE) │ (MCP Server) │
└─────────────┘ └──────────────────┘ └─────────────────┘
▲ │
│ ▼
└────────── Databricks OAuth ──────► Workspace APIs
```
### Components
1. **MCP Server** (`server/app.py`): A FastAPI app with integrated MCP server that:
- Dynamically loads prompts from `prompts/*.md` files
- Exposes Python functions as MCP tools via `@mcp_server.tool` decorator
- Handles both HTTP requests and MCP protocol over Server-Sent Events
2. **Prompts** (`prompts/`): Simple markdown files where:
- Filename = prompt name (e.g., `check_system.md` → `check_system` prompt)
- First line with `#` = description
- File content = what gets returned to Claude
3. **Local Proxy** (`dba_mcp_proxy/`): Authenticates and proxies MCP requests:
- Handles Databricks OAuth authentication automatically
- Translates between Claude's stdio protocol and HTTP/SSE
- Works with both local development and deployed apps
## 🎬 Demo
This 10-minute video shows you how to set up and use a Databricks MCP server with Claude: https://www.youtube.com/watch?v=oKE59zgb6e0
[](https://www.youtube.com/watch?v=oKE59zgb6e0)
This video demonstrates creating your own MCP server with a custom jobs interface in Claude.
## Quick Start
### Create Your Own MCP Server
#### Step 1: Use this template
[](https://github.com/databricks-solutions/custom-mcp-databricks-app/generate)
Or use the GitHub CLI:
```bash
gh repo create my-mcp-server --template databricks-solutions/custom-mcp-databricks-app --private
```
#### Step 2: Clone and setup
```bash
# Clone your new repository
git clone https://github.com/YOUR-USERNAME/my-mcp-server.git
cd my-mcp-server
# Run the interactive setup
./setup.sh
```
This will:
- Configure Databricks authentication
- Set your MCP server name
- Install all dependencies
- Create your `.env.local` file
#### Step 3: Deploy with Claude
In Claude Code, run:
```
/setup-mcp
```
This will:
- Deploy your MCP server to Databricks Apps
- Configure the MCP integration
- Show you available prompts and tools
Then restart Claude Code to use your new MCP server.
### Add to Claude CLI
After deployment, add your MCP server to Claude:
```bash
# Set your Databricks configuration
export DATABRICKS_HOST="https://your-workspace.cloud.databricks.com"
export DATABRICKS_APP_URL="https://your-app.databricksapps.com" # Get this from ./app_status.sh
export SERVER_NAME="your-server-name" # This comes from config.yaml (set during ./setup.sh)
# Add your MCP server to Claude (user-scoped)
claude mcp add $SERVER_NAME --scope user -- \
uvx --refresh --from git+ssh://git@github.com/YOUR-USERNAME/your-repo.git dba-mcp-proxy \
--databricks-host $DATABRICKS_HOST \
--databricks-app-url $DATABRICKS_APP_URL
```
### Local Development
```bash
# Clone and setup
git clone <your-repo>
cd <your-repo>
./setup.sh
# Start dev server
./watch.sh
# Set your configuration for local testing
export DATABRICKS_HOST="https://your-workspace.cloud.databricks.com"
export DATABRICKS_APP_URL="http://localhost:8000" # Local dev server
# Add to Claude for local testing
claude mcp add databricks-mcp-local --scope local -- \
uvx --refresh --from git+ssh://git@github.com/YOUR-ORG/YOUR-REPO.git dba-mcp-proxy \
--databricks-host $DATABRICKS_HOST \
--databricks-app-url $DATABRICKS_APP_URL
```
## Customization Guide
This template uses [FastMCP](https://github.com/jlowin/fastmcp), a framework that makes it easy to build MCP servers. FastMCP provides two main decorators for extending functionality:
- **`@mcp_server.prompt`** - For registering prompts that return text
- **`@mcp_server.tool`** - For registering tools that execute functions
### Adding Prompts
The easiest way is to create a markdown file in the `prompts/` directory:
```markdown
# Get cluster information
List all available clusters in the workspace with their current status
```
The prompt will be automatically loaded with:
- **Name**: filename without extension (e.g., `get_clusters.md` → `get_clusters`)
- **Description**: first line after `#`
- **Content**: entire file content
Alternatively, you can register prompts as functions in `server/app.py`:
```python
@mcp_server.prompt(name="dynamic_status", description="Get dynamic system status")
async def get_dynamic_status():
# This can include dynamic logic, API calls, etc.
w = get_workspace_client()
current_user = w.current_user.me()
return f"Current user: {current_user.display_name}\nWorkspace: {DATABRICKS_HOST}"
```
We auto-load `prompts/` for convenience, but function-based prompts are useful when you need dynamic content.
### Adding Tools
Add a function in `server/app.py` using the `@mcp_server.tool` decorator:
```python
@mcp_server.tool
def list_clusters(status: str = "RUNNING") -> dict:
"""List Databricks clusters by status."""
w = get_workspace_client()
clusters = []
for cluster in w.clusters.list():
if cluster.state.name == status:
clusters.append({
"id": cluster.cluster_id,
"name": cluster.cluster_name,
"state": cluster.state.name
})
return {"clusters": clusters}
```
Tools must:
- Use the `@mcp_server.tool` decorator
- Have a docstring (becomes the tool description)
- Return JSON-serializable data (dict, list, str, etc.)
- Accept only JSON-serializable parameters
## Deployment
```bash
# Deploy to Databricks Apps
./deploy.sh
# Check status and get your app URL
./app_status.sh
```
Your MCP server will be available at `https://your-app.databricksapps.com/mcp/`
The `app_status.sh` script will show your deployed app URL, which you'll need for the `DATABRICKS_APP_URL` environment variable when adding the MCP server to Claude.
## Authentication
- **Local Development**: No authentication required
- **Production**: OAuth is handled automatically by the proxy using your Databricks CLI credentials
## Examples
### Using with Claude
Once added, you can interact with your MCP server in Claude:
```
Human: What prompts are available?
Claude: I can see the following prompts from your Databricks MCP server:
- check_system: Get system information
- list_files: List files in the current directory
- ping_google: Check network connectivity
```
### Sample Tool Usage
```
Human: Can you execute a SQL query to show databases?
Claude: I'll execute that SQL query for you using the execute_dbsql tool.
[Executes SQL and returns results]
```
## Project Structure
```
├── server/ # FastAPI backend with MCP server
│ ├── app.py # Main application + MCP tools
│ └── routers/ # API endpoints
├── prompts/ # MCP prompts (markdown files)
│ ├── check_system.md
│ ├── list_files.md
│ └── ping_google.md
├── dba_mcp_proxy/ # MCP proxy for Claude CLI
│ └── mcp_client.py # OAuth + proxy implementation
├── client/ # React frontend (optional)
├── scripts/ # Development tools
└── pyproject.toml # Python package configuration
```
## Advanced Usage
### Environment Variables
Configure in `.env.local`:
```bash
DATABRICKS_HOST=https://your-workspace.cloud.databricks.com
DATABRICKS_TOKEN=your-token # For local development
DATABRICKS_SQL_WAREHOUSE_ID=your-warehouse-id # For SQL tools
```
### Creating Complex Tools
Tools can access the full Databricks SDK:
```python
@mcp_server.tool
def create_job(name: str, notebook_path: str, cluster_id: str) -> dict:
"""Create a Databricks job."""
w = get_workspace_client()
job = w.jobs.create(
name=name,
tasks=[{
"task_key": "main",
"notebook_task": {"notebook_path": notebook_path},
"existing_cluster_id": cluster_id
}]
)
return {"job_id": job.job_id, "run_now_url": f"{DATABRICKS_HOST}/#job/{job.job_id}"}
```
## Testing Your MCP Server
This template includes comprehensive testing tools for validating MCP functionality at multiple levels.
### Quick Verification
After adding the MCP server to Claude, verify it's working:
```bash
# List available prompts and tools
echo "What MCP prompts are available from databricks-mcp?" | claude
# Test a specific prompt
echo "Use the check_system prompt from databricks-mcp" | claude
```
### Comprehensive Testing Suite
The `claude_scripts/` directory contains 6 testing tools for thorough MCP validation:
#### Command Line Tests
```bash
# Test local MCP server (requires ./watch.sh to be running)
./claude_scripts/test_local_mcp_curl.sh # Direct HTTP/curl tests with session handling
./claude_scripts/test_local_mcp_proxy.sh # MCP proxy client tests
# Test remote MCP server (requires Databricks auth and deployment)
./claude_scripts/test_remote_mcp_curl.sh # OAuth + HTTP tests with dynamic URL discovery
./claude_scripts/test_remote_mcp_proxy.sh # Full end-to-end MCP proxy tests
```
#### Interactive Web UI Tests
```bash
# Launch MCP Inspector for visual testing (requires ./watch.sh for local)
./claude_scripts/inspect_local_mcp.sh # Local server web interface
./claude_scripts/inspect_remote_mcp.sh # Remote server web interface
```
**MCP Inspector Features:**
- 🖥️ Web-based interface for interactive MCP server testing
- 🔧 Visual tool execution with parameter input forms
- 📊 Real-time request/response monitoring
- 🐛 Protocol-level debugging and error inspection
- 📋 Complete tool and resource discovery
#### What Each Test Validates
| Test Type | Authentication | Protocol | Session Management | Tool Discovery |
|-----------|---------------|----------|-------------------|----------------|
| **curl tests** | ✅ | ✅ | ✅ | ✅ |
| **proxy tests** | ✅ | ✅ | ✅ | ✅ |
| **MCP Inspector** | ✅ | ✅ | ✅ | ✅ |
All tests dynamically discover app URLs and handle OAuth authentication automatically.
See [`claude_scripts/README.md`](claude_scripts/README.md) for detailed documentation.
## Troubleshooting
- **Authentication errors**: Run `databricks auth login` to refresh credentials
- **MCP not found**: Ensure the app is deployed and accessible
- **Tool errors**: Check logs at `https://your-app.databricksapps.com/logz`
- **MCP connection issues**:
- Check Claude logs: `tail -f ~/Library/Logs/Claude/*.log`
- Verify the proxy works: `uvx --refresh --from git+ssh://... dba-mcp-proxy --help`
- Test with echo pipe: `echo "list your mcp commands" | claude`
- **Cached version issues**: If you get errors about missing arguments after an update:
```bash
# Clear uvx cache for this package
rm -rf ~/.cache/uv/git-v0/checkouts/*/
# Or clear entire uv cache
uv cache clean
```
## Contributing
1. Fork the repository
2. Add your prompts and tools
3. Test locally with `./watch.sh`
4. Submit a pull request
## License
See [LICENSE.md](LICENSE.md)