Skip to main content
Glama

Databricks MCP Server

CLAUDE.md26.5 kB
# Databricks App Template Development Guide ## Project Memory This is a modern full-stack application template for Databricks Apps, featuring FastAPI backend with React TypeScript frontend and modern development tooling. ## Tech Stack **Backend:** - Python with `uv` for package management - FastAPI for API framework - Databricks SDK for workspace integration - OpenAPI automatic client generation **Frontend:** - TypeScript with React - Vite for fast development and hot reloading - shadcn/ui components with Tailwind CSS - React Query for API state management - Bun for package management ## Development Workflow ### 🚨 CRITICAL: UV Installation Required 🚨 **IMPORTANT: This project requires `uv` (Python package manager) to be installed.** Before proceeding with any development tasks, **ALWAYS check if uv is installed:** ```bash # Check if uv is installed uv --version ``` **If uv is not found or command fails:** 1. **ASK USER PERMISSION** before installing: "uv is required for this project. May I install it for you?" 2. **Only after user approval**, install using the official installer: ```bash # Install uv (requires user permission) curl -LsSf https://astral.sh/uv/install.sh | sh # Restart shell or source the updated PATH source ~/.bashrc # or ~/.zshrc # Verify installation uv --version ``` **Why uv is required:** - All Python dependency management (`uv add/remove`) - Virtual environment management - Python execution (`uv run python`) - Backend server operation - Package installation and updates **Without uv installed, NOTHING in this project will work correctly.** ### Package Management - Use `uv add/remove` for Python dependencies, not manual edits to pyproject.toml - Use `bun add/remove` for frontend dependencies, not manual package.json edits - Always check if dependencies exist in the project before adding new ones ### Development Commands - `./setup.sh` - Interactive environment setup and dependency installation - `./watch.sh` - Start development servers with hot reloading (frontend:5173, backend:8000) - `./fix.sh` - Format code (ruff for Python, prettier for TypeScript) - `./deploy.sh` - Deploy to Databricks Apps ### 🚨 IMPORTANT: NEVER RUN THE SERVER MANUALLY 🚨 **ALWAYS use the watch script with nohup and logging:** ```bash # Start development servers (REQUIRED COMMAND) nohup ./watch.sh > /tmp/databricks-app-watch.log 2>&1 & # Or for production mode nohup ./watch.sh --prod > /tmp/databricks-app-watch.log 2>&1 & ``` **NEVER run uvicorn or the server directly!** Always use `./watch.sh` as it: - Configures environment variables properly - Starts both frontend and backend correctly - Generates TypeScript client automatically - Handles authentication setup - Provides proper logging and error handling ### 🚨 PYTHON EXECUTION RULE 🚨 **NEVER run `python` directly - ALWAYS use `uv run`:** ```bash # ✅ CORRECT - Always use uv run uv run python script.py uv run uvicorn server.app:app uv run scripts/make_fastapi_client.py # ❌ WRONG - Never use python directly python script.py uvicorn server.app:app python scripts/make_fastapi_client.py ``` ### 🚨 DATABRICKS CLI EXECUTION RULE 🚨 **IMPORTANT: Databricks CLI Installation Required** If you don't have the Databricks CLI installed or it's outdated, **ALWAYS ask the user before installing.** **Requires version 0.260.0 or higher:** **Installation Process:** 1. First check if CLI exists and version: `databricks version` 2. If missing or outdated, **ASK USER PERMISSION** before installing 3. Only after user approval, install using official installer 4. Verify installation worked correctly ```bash # Check current version (if installed) databricks version # If user approves installation, use the official installer (REQUIRED - ensures latest version) curl -fsSL https://raw.githubusercontent.com/databricks/setup-cli/main/install.sh | sh # Verify version is 0.260.0+ databricks version ``` **NEVER run `databricks` CLI directly - ALWAYS prefix with environment setup:** ```bash # ✅ CORRECT - Always source .env.local first source .env.local && export DATABRICKS_HOST && export DATABRICKS_TOKEN && databricks current-user me source .env.local && export DATABRICKS_HOST && export DATABRICKS_TOKEN && databricks apps list source .env.local && export DATABRICKS_HOST && export DATABRICKS_TOKEN && databricks workspace list / # ❌ WRONG - Never use databricks CLI directly databricks current-user me databricks apps list databricks workspace list / ``` **Why this is required:** - Ensures environment variables are loaded from .env.local - Exports authentication variables to environment - Prevents authentication failures and missing configuration ### Claude Natural Language Commands Claude understands natural language commands for common development tasks: **Development Lifecycle:** - "start the devserver" → Runs `./watch.sh` in background with logging - "kill the devserver" → Stops all background development processes - "fix the code" → Runs `./fix.sh` to format Python and TypeScript code - "deploy the app" → Runs `./deploy.sh` to deploy to Databricks Apps **Development Tasks:** - "add a new API endpoint" → Creates FastAPI routes with proper patterns - "create a new React component" → Builds UI components using shadcn/ui - "debug this error" → Analyzes logs and fixes issues - "install [package]" → Adds dependencies using uv (Python) or bun (frontend) - "generate the TypeScript client" → Regenerates API client from OpenAPI spec - "open the UI in playwright" → Opens the frontend app in Playwright browser for testing - "open app" → Gets app URL from `./app_status.sh` and opens it with `open {url}` ### Implementation Validation Workflow **During implementation, ALWAYS:** 1. **Start development server first**: `nohup ./watch.sh > /tmp/databricks-app-watch.log 2>&1 &` 2. **Open app with Playwright** to see current state before changes 3. **After each implementation step:** - Check logs: `tail -f /tmp/databricks-app-watch.log` - Use Playwright to verify UI changes are working - Take snapshots to confirm features render correctly - Test user interactions and API calls 4. **🚨 CRITICAL: FastAPI Endpoint Verification** - **IMPORTANT: After adding ANY new FastAPI endpoint, MUST curl the endpoint to verify it works** - **NEVER move on to the next step until the endpoint is verified with curl** - **Example verification commands:** ```bash # Test GET endpoint curl -s http://localhost:8000/api/new-endpoint | jq # Test POST endpoint curl -X POST -H "Content-Type: application/json" -d '{"key":"value"}' http://localhost:8000/api/new-endpoint | jq ``` - **Show the curl response to confirm the endpoint works correctly** - **If the endpoint fails, debug and fix it before proceeding** 5. **Install Playwright if needed**: `claude mcp add playwright npx '@playwright/mcp@latest'` 6. **Iterative validation**: Test each feature before moving to next step **This ensures every implementation step is validated and working before proceeding.** ### Development Server - **ALWAYS** run `./watch.sh` with nohup in background and log to file for debugging - Watch script automatically runs in background and logs to `/tmp/databricks-app-watch.log` - Frontend runs on http://localhost:5173 - Backend runs on http://localhost:8000 - API docs available at http://localhost:8000/docs - Supports hot reloading for both frontend and backend - Automatically generates TypeScript client from FastAPI OpenAPI spec - **Check logs**: `tail -f /tmp/databricks-app-watch.log` - **Stop processes**: `pkill -f "watch.sh"` or check PID file ### Code Quality - Use `./fix.sh` for code formatting before commits - Python: ruff for formatting and linting, ty for type checking - TypeScript: prettier for formatting, ESLint for linting - Type checking with TypeScript and ty (Python) ### API Development - FastAPI automatically generates OpenAPI spec - TypeScript client is auto-generated from OpenAPI spec - Test endpoints with curl or FastAPI docs - Check server logs after requests - Verify response includes expected fields ### Databricks API Integration - **ALWAYS** reference `docs/databricks_apis/` documentation when implementing Databricks features - Use `docs/databricks_apis/databricks_sdk.md` for workspace, cluster, and SQL operations - Use `docs/databricks_apis/mlflow_genai.md` for AI agent and LLM functionality - Use `docs/databricks_apis/model_serving.md` for model serving endpoints and inference - Use `docs/databricks_apis/workspace_apis.md` for file operations and directory management - Follow the documented patterns and examples for proper API usage - Check official documentation links in each API guide for latest updates ### Frontend Development - Use shadcn/ui components for consistent UI - Follow React Query patterns for API calls - Use TypeScript strictly - no `any` types - Import from auto-generated client: `import { apiClient } from '@/fastapi_client'` - Client uses shadcn/ui components with proper TypeScript configuration - shadcn components must be added with: npx shadcn@latest add <component-name> ### Testing Methodology - Test API endpoints using FastAPI docs interface - Use browser dev tools for frontend debugging - Check network tab for API request/response inspection - Verify console for any JavaScript errors ### Deployment - Use `./deploy.sh` for Databricks Apps deployment - Automatically builds frontend and generates requirements.txt - Configures app.yaml with environment variables - Verifies deployment through Databricks CLI - **IMPORTANT**: After deployment, monitor `/logz` endpoint of your Databricks app to check for installation issues - App logs are available at: `https://<app-url>/logz` (visit in browser - requires OAuth authentication) ### Environment Configuration - Use `.env.local` for local development configuration - Set environment variables and Databricks credentials - Never commit `.env.local` to version control - Use `./setup.sh` to create and update environment configuration ### Debugging Tips - Verify environment variables are set correctly - Use FastAPI docs for API testing: http://localhost:8000/docs - Check browser console for frontend errors - Use React Query DevTools for API state inspection - **Check watch logs**: `tail -f /tmp/databricks-app-watch.log` for all development server output - **Check process status**: `ps aux | grep databricks-app` or check PID file at `/tmp/databricks-app-watch.pid` - **Force stop**: `kill $(cat /tmp/databricks-app-watch.pid)` or `pkill -f watch.sh` ### Key Files - `server/app.py` - FastAPI application entry point - `server/routers/` - API endpoint routers - `client/src/App.tsx` - React application entry point - `client/src/pages/` - React page components - `scripts/make_fastapi_client.py` - TypeScript client generator - `pyproject.toml` - Python dependencies and project configuration - `client/package.json` - Frontend dependencies and scripts - `claude_scripts/` - Test scripts created by Claude for testing functionality ### API Documentation - `docs/databricks_apis/` - Comprehensive API documentation for Databricks integrations - `docs/databricks_apis/databricks_sdk.md` - Databricks SDK usage patterns - `docs/databricks_apis/mlflow_genai.md` - MLflow GenAI for AI agents - `docs/databricks_apis/model_serving.md` - Model serving endpoints and inference - `docs/databricks_apis/workspace_apis.md` - Workspace file operations ### Documentation Files - `docs/product.md` - Product requirements document (created during /dba workflow) - `docs/design.md` - Technical design document (created during /dba workflow) - These files are generated through iterative collaboration with the user during the /dba command ### Common Issues - If TypeScript client is not found, run the client generation script manually - If hot reload not working, restart `./watch.sh` - If dependencies missing, run `./setup.sh` to reinstall ### MCP (Model Context Protocol) Integration **IMPORTANT: The server must support BOTH HTTP homepage AND MCP over HTTP simultaneously.** #### MCP Setup and Configuration - **ALWAYS use absolute paths when adding MCP servers** because the command can be run from anywhere: ```bash # ✅ CORRECT - Use absolute path claude mcp add databricks-proxy /Users/nikhil.thorat/emu/mcp-commands-databricks-app/mcp_databricks_client.py # ❌ WRONG - Never use relative paths claude mcp add databricks-proxy ./mcp_databricks_client.py ``` #### MCP Testing Workflow **End-to-end testing process for MCP integration:** 1. **Add the MCP server to Claude CLI:** ```bash claude mcp add databricks-proxy /Users/nikhil.thorat/emu/mcp-commands-databricks-app/mcp_databricks_client.py ``` 2. **Test MCP availability:** ```bash # Test if MCP tools are available echo "list the mcp prompts and tools" | claude ``` 3. **Check MCP logs for debugging:** ```bash # Find MCP log directory (created by Claude CLI) ls -la ~/Library/Caches/claude-cli-nodejs/-Users-nikhil-thorat-emu-mcp-commands-databricks-app/mcp-logs-databricks-proxy/ # Read the latest log file cat ~/Library/Caches/claude-cli-nodejs/-Users-nikhil-thorat-emu-mcp-commands-databricks-app/mcp-logs-databricks-proxy/$(ls -t ~/Library/Caches/claude-cli-nodejs/-Users-nikhil-thorat-emu-mcp-commands-databricks-app/mcp-logs-databricks-proxy/ | head -1) ``` **Log locations from actual testing:** - MCP logs: `~/Library/Caches/claude-cli-nodejs/-Users-nikhil-thorat-emu-mcp-commands-databricks-app/mcp-logs-databricks-proxy/` - Log files are timestamped like: `mcp-2025-07-22T00-14-48-872Z.log` - Logs contain detailed MCP communication including tool discovery and execution 4. **Verify both HTTP and MCP work simultaneously:** - HTTP Homepage: `http://localhost:5176` (or port shown in watch logs) - MCP Discovery: Available through Claude CLI when MCP server is added - Both must work at the same time without conflicts #### MCP Architecture in this App - FastAPI app serves both regular HTTP endpoints and MCP functionality - MCP server is integrated using FastMCP library - MCP tools are mounted at `/mcp` path with SSE support - Client proxy (`mcp_databricks_client.py`) connects to deployed app or local server - OAuth authentication handled automatically for deployed apps ### Testing MCP Servers When testing MCP server connections, use this trick: ```bash # Check if MCP server is connected and list available commands echo "list your mcp commands" | claude # Check specific MCP server prompts echo "What MCP prompts are available from databricks-mcp?" | claude ``` If the MCP server doesn't respond: 1. Check Claude logs: `tail -f ~/Library/Logs/Claude/*.log` 2. Check MCP logs in cache directory 3. Verify the proxy command works standalone 4. Ensure the app is deployed and accessible ### Writing Effective MCP Prompts **IMPORTANT: MCP prompts should be detailed and actionable, not short and vague.** MCP prompts are stored in the `prompts/` directory as Markdown files. When Claude receives these prompts, they should provide clear, specific instructions about what to do immediately. #### Best Practices for MCP Prompts: 1. **Be Explicit and Detailed**: Instead of "List files", write detailed instructions like: ```markdown # Directory Contents Analysis **IMMEDIATE ACTION REQUIRED:** Execute the ls command right now to display all files and directories. You must run this exact command immediately: ```bash ls -la ``` **What this command does:** - `ls` lists directory contents - `-l` shows detailed information (permissions, size, date modified) - `-a` shows ALL files including hidden files ``` 2. **Use Action-Oriented Language**: - ✅ "Execute this command now" - ✅ "Run the following immediately" - ✅ "You must perform this action" - ❌ "You can list files" - ❌ "Consider running ls" 3. **Provide Context and Explanation**: Include: - What the command/action does - Why it's important - What output to expect - How to interpret results 4. **Specify Exact Commands**: Always provide the complete, copy-pasteable command rather than general instructions. 5. **Use Clear Structure**: - Start with clear action requirement - Provide exact command in code block - Explain what it does - Explain why it matters #### Example Transformation: **Bad (vague):** ```markdown Use ping to test connectivity ``` **Good (detailed and actionable):** ```markdown # Test Network Connectivity **IMMEDIATE ACTION REQUIRED:** Run the ping command right now to test network connectivity to Google. You must execute this exact command immediately: ```bash ping -c 4 google.com ``` **What this does:** - Tests if your system can reach google.com - Sends 4 ping packets (-c 4 flag limits to 4 pings) - Shows response times and packet loss statistics - Confirms internet connectivity and DNS resolution **Execute the ping command now using the Bash tool.** ``` ### Databricks App Testing and Debugging The project includes two powerful clients for testing and debugging deployed Databricks apps: #### HTTP API Client (dba_client.py) Test your deployed app's API endpoints with authenticated requests: ```bash # Test user authentication and get user info uv run python dba_client.py https://your-app.aws.databricksapps.com /api/user/me # Get MCP server information uv run python dba_client.py https://your-app.aws.databricksapps.com /api/mcp_info/info # Test MCP discovery endpoint uv run python dba_client.py https://your-app.aws.databricksapps.com /api/mcp_info/discovery # Make POST requests with JSON data uv run python dba_client.py https://your-app.aws.databricksapps.com /api/data POST '{"key":"value"}' # Test any custom endpoint uv run python dba_client.py https://your-app.aws.databricksapps.com /api/custom/endpoint ``` **Features:** - Automatic Databricks CLI OAuth authentication - Supports GET, POST, PUT, DELETE methods - Token caching and validation - Uses environment variables from `.env.local` - Detailed debug output showing token usage #### WebSocket Log Streaming Client (dba_logz.py) Stream live logs from your deployed Databricks app for real-time debugging: ```bash # Stream all logs for 30 seconds (default) uv run python dba_logz.py https://your-app.aws.databricksapps.com # Stream logs for a specific duration uv run python dba_logz.py https://your-app.aws.databricksapps.com --duration 10 # Filter logs with search query uv run python dba_logz.py https://your-app.aws.databricksapps.com --search "ERROR" --duration 60 # Search for specific API calls uv run python dba_logz.py https://your-app.aws.databricksapps.com --search "/api/mcp" --duration 30 # Monitor startup logs uv run python dba_logz.py https://your-app.aws.databricksapps.com --search "FastAPI" --duration 15 ``` **Features:** - Real-time WebSocket connection to `/logz/stream` - Optional search filtering with regex support - Configurable streaming duration - Automatic OAuth authentication - Structured JSON log output with timestamps #### Authentication Setup Both clients use your existing Databricks CLI authentication: ```bash # Ensure you're authenticated (both clients will check this automatically) source .env.local && export DATABRICKS_HOST && export DATABRICKS_TOKEN && databricks current-user me ``` The clients automatically: - Load environment variables from `.env.local` - Use your Databricks CLI profile or host configuration - Handle token refresh if needed - Provide detailed authentication debug output #### Debugging Workflow 1. **Test basic connectivity:** ```bash uv run python dba_client.py https://your-app.aws.databricksapps.com /api/user/me ``` 2. **Verify MCP functionality:** ```bash uv run python dba_client.py https://your-app.aws.databricksapps.com /api/mcp_info/info ``` 3. **Monitor live logs during testing:** ```bash uv run python dba_logz.py https://your-app.aws.databricksapps.com --duration 60 & # In another terminal, test your app uv run python dba_client.py https://your-app.aws.databricksapps.com /api/some/endpoint ``` 4. **Debug specific issues:** ```bash # Search for errors uv run python dba_logz.py https://your-app.aws.databricksapps.com --search "ERROR|Failed|Exception" # Monitor specific endpoints uv run python dba_logz.py https://your-app.aws.databricksapps.com --search "/api/mcp_info" ``` ## MCP Debugging and Troubleshooting ### 🚨 CRITICAL: MCP Connection Debugging **When MCP integration isn't working, use this systematic debugging approach:** #### Step 1: Test Before Adding to Claude CLI **CRITICAL: Always test your MCP connection locally before running `claude mcp add`** ```bash # Go to the MCP proxy directory cd dba_mcp_proxy # Test MCP connection and discover what tools are available echo '{"jsonrpc": "2.0", "id": "test", "method": "tools/list"}' | python mcp_client.py --databricks-host YOUR_DATABRICKS_HOST --databricks-app-url YOUR_APP_URL ``` **This should return a JSON response with available tools. Take note of the tool names.** #### Step 2: Test Any Available Tool **Pick any tool from the list and test it:** ```bash # Generic pattern - replace TOOL_NAME with any tool from your list echo '{"jsonrpc": "2.0", "id": "test", "method": "tools/call", "params": {"name": "TOOL_NAME", "arguments": {}}}' | python mcp_client.py --databricks-host YOUR_DATABRICKS_HOST --databricks-app-url YOUR_APP_URL # Example with a common tool (if it exists in your setup) echo '{"jsonrpc": "2.0", "id": "test", "method": "tools/call", "params": {"name": "health", "arguments": {}}}' | python mcp_client.py --databricks-host YOUR_DATABRICKS_HOST --databricks-app-url YOUR_APP_URL ``` #### Step 3: Log Verification Workflow **CRITICAL: Verify requests are reaching your app by monitoring logs simultaneously:** 1. **Start log monitoring in one terminal:** ```bash # Monitor for MCP requests specifically uv run python dba_logz.py YOUR_APP_URL --search "/mcp" --duration 60 ``` 2. **In another terminal, make any MCP request:** ```bash cd dba_mcp_proxy echo '{"jsonrpc": "2.0", "id": "test", "method": "tools/call", "params": {"name": "TOOL_NAME", "arguments": {}}}' | python mcp_client.py --databricks-host YOUR_DATABRICKS_HOST --databricks-app-url YOUR_APP_URL ``` 3. **Verify log output shows the request:** ``` 📋 {"source":"APP","timestamp":1756142xxx,"message":"INFO: 127.0.0.1:xxxxx - \"POST /mcp/ HTTP/1.1\" 200 OK"} ``` **If you see the `/mcp` POST request at the same time you sent it, then you know you're in good shape!** #### Step 4: Only After Local Testing Works - Add to Claude CLI **Once Steps 1-3 work locally, then add to Claude CLI:** ```bash # Get your app URL export DATABRICKS_APP_URL=$(./app_status.sh | grep "App URL" | awk '{print $NF}') # Add to Claude CLI (this runs the same uvx command you just tested) claude mcp add YOUR_SERVER_NAME --scope user -- \ uvx --refresh --from git+ssh://git@github.com/databricks-solutions/custom-mcp-databricks-app.git dba-mcp-proxy \ --databricks-host $DATABRICKS_HOST \ --databricks-app-url $DATABRICKS_APP_URL ``` **The key insight: The `claude mcp add` command runs the exact same `uvx --refresh --from...` command you can test locally first.** ### Common Issues and Solutions #### Issue 1: "Connection refused" or timeout errors **Diagnosis:** ```bash # Test basic connectivity uv run python dba_client.py https://your-app.aws.databricksapps.com /api/user/me ``` **Solutions:** - Verify app is deployed and running: `./app_status.sh` - Check if app URL is correct in your command - Ensure you're authenticated: `databricks current-user me` #### Issue 2: "401 Unauthorized" errors **Diagnosis:** ```bash # Check authentication source .env.local && export DATABRICKS_HOST && export DATABRICKS_TOKEN && databricks current-user me ``` **Solutions:** - Re-authenticate: `databricks auth login --host $DATABRICKS_HOST` - Verify environment variables in `.env.local` - Check if your token has expired #### Issue 3: MCP tools not found **Diagnosis:** ```bash # Test MCP endpoint directly uv run python dba_client.py https://your-app.aws.databricksapps.com /api/mcp_info/discovery ``` **Solutions:** - Redeploy the app: `./deploy.sh` - Check app logs for startup errors: `uv run python dba_logz.py https://your-app.aws.databricksapps.com --search "ERROR|FastAPI" --duration 30` - Verify MCP server is running on the app #### Issue 4: SQL queries failing **Symptoms:** `"No SQL warehouse ID provided"` or warehouse errors **Diagnosis:** ```bash # Check available warehouses echo '{"jsonrpc": "2.0", "id": "test", "method": "tools/call", "params": {"name": "list_warehouses", "arguments": {}}}' | python mcp_client.py --databricks-host YOUR_DATABRICKS_HOST --databricks-app-url YOUR_APP_URL ``` **Solutions:** - Ensure you have at least one SQL warehouse running - Set `DATABRICKS_SQL_WAREHOUSE_ID` in your app's environment - Start a warehouse in the Databricks workspace UI ### Debug Command Reference **Quick debugging commands:** ```bash # Test MCP proxy connection cd dba_mcp_proxy && echo '{"jsonrpc": "2.0", "id": "test", "method": "tools/list"}' | python mcp_client.py --databricks-host $DATABRICKS_HOST --databricks-app-url $DATABRICKS_APP_URL # Test HTTP client uv run python dba_client.py $DATABRICKS_APP_URL /api/user/me # Monitor logs for 30 seconds uv run python dba_logz.py $DATABRICKS_APP_URL --duration 30 # Monitor MCP requests specifically uv run python dba_logz.py $DATABRICKS_APP_URL --search "/mcp|MCP" --duration 60 # Test app health through MCP cd dba_mcp_proxy && echo '{"jsonrpc": "2.0", "id": "test", "method": "tools/call", "params": {"name": "health", "arguments": {}}}' | python mcp_client.py --databricks-host $DATABRICKS_HOST --databricks-app-url $DATABRICKS_APP_URL ``` **Environment setup for debugging:** ```bash # Load environment and test source .env.local export DATABRICKS_HOST export DATABRICKS_TOKEN export DATABRICKS_APP_URL=$(./app_status.sh | grep "App URL" | awk '{print $NF}') # Verify all variables are set echo "Host: $DATABRICKS_HOST" echo "App URL: $DATABRICKS_APP_URL" databricks current-user me ``` Remember: This is a development template focused on rapid iteration and modern tooling.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/FernandoVazquez20/databricks-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server