Skip to main content
Glama

CTS MCP Server

by EricA1019
levenshtein.d.tsโ€ข1.57 kB
/** * Levenshtein Distance Algorithm * * Calculates edit distance between two strings for similarity detection. * * @module refactoring/levenshtein */ /** * Calculate Levenshtein distance between two strings. * * The Levenshtein distance is the minimum number of single-character edits * (insertions, deletions, or substitutions) required to change one string into another. * * Time complexity: O(m * n) where m and n are string lengths * Space complexity: O(min(m, n)) using space-optimized approach * * @param s1 - First string * @param s2 - Second string * @returns Edit distance between the strings * * @example * ```typescript * levenshtein('health_changed', 'health_change') // 1 * levenshtein('player_died', 'player_dead') // 2 * levenshtein('signal_a', 'signal_b') // 1 * ``` */ export declare function levenshtein(s1: string, s2: string): number; /** * Calculate normalized Levenshtein distance (0.0 - 1.0). * * Normalized distance = distance / max(len1, len2) * * @param s1 - First string * @param s2 - Second string * @returns Normalized distance (0.0 = identical, 1.0 = completely different) */ export declare function normalizedLevenshtein(s1: string, s2: string): number; /** * Calculate Levenshtein similarity (0.0 - 1.0). * * Similarity = 1 - normalized distance * * @param s1 - First string * @param s2 - Second string * @returns Similarity score (1.0 = identical, 0.0 = completely different) */ export declare function levenshteinSimilarity(s1: string, s2: string): number; //# sourceMappingURL=levenshtein.d.ts.map

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/EricA1019/CTS_MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server