Skip to main content
Glama

CTS MCP Server

by EricA1019
tfidf_labeler.d.tsโ€ข1.87 kB
/** * TF-IDF Labeler * * Generates semantic labels for signal clusters using TF-IDF analysis. * * Algorithm: * 1. Tokenize signal names by splitting on underscores * 2. Calculate term frequency (TF) within cluster * 3. Calculate inverse document frequency (IDF) across all signals * 4. Compute TF-IDF scores and select top 3 terms * 5. Join top terms with underscores to form label */ import type { TermScore } from './types.js'; export declare class TFIDFLabeler { private corpusTokens; private totalSignals; constructor(); /** * Build corpus from all signal names in the project. * This must be called once before generating labels. */ buildCorpus(allSignalNames: string[]): void; /** * Generate semantic label for a cluster using TF-IDF. * * @param signalNames - Signals in the cluster * @param topN - Number of top terms to include in label (default: 3) * @returns Auto-generated label (e.g., 'player_health_damage') */ generateLabel(signalNames: string[], topN?: number): string; /** * Generate label with detailed term scores. * Useful for debugging and manual review. */ generateLabelWithScores(signalNames: string[], topN?: number): { label: string; topTerms: TermScore[]; }; /** * Tokenize signal name by splitting on underscores. * Filters out common noise words. */ private tokenize; /** * Calculate inverse document frequency for a term. * * IDF = log(N / df) * where N = total signals, df = signals containing term */ private calculateIDF; /** * Get corpus statistics for debugging. */ getCorpusStats(): { totalSignals: number; uniqueTerms: number; avgTermsPerSignal: number; }; } //# sourceMappingURL=tfidf_labeler.d.ts.map

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/EricA1019/CTS_MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server