Skip to main content
Glama
trend_data_pipeline.d.ts1.75 kB
/** * Performance Trend Data Pipeline * Aggregates LOC, test count, and coverage metrics from Git history */ import { TrendDataset } from '../schemas/trend_data_schema.js'; export declare class TrendDataPipeline { /** * Aggregate performance metrics from Git history * @param projectPath Path to Git repository * @param weeks Number of weeks to analyze (default 12) * @returns Time-series dataset with LOC, test count, and coverage */ aggregateMetrics(projectPath: string, weeks?: number): Promise<TrendDataset>; /** * Generate dataset from current project snapshot (no Git history) */ private generateSnapshotDataset; /** * Generate ISO week boundaries for time range */ private generateWeekBoundaries; /** * Get Monday of the week containing given date at 00:00:00 */ private getMonday; /** * Get Git commits in date range */ private getCommitsInRange; /** * Aggregate metrics per week from commits */ private aggregateWeeklyMetrics; /** * Calculate LOC, test count, and coverage at specific commit */ private calculateMetricsAtCommit; /** * Count lines of code (TypeScript/JavaScript files) */ private countLinesOfCode; /** * Count test files and test cases */ private countTests; /** * Estimate coverage percentage (simple heuristic: tests / LOC ratio) */ private estimateCoverage; /** * Interpolate missing data points using linear interpolation */ private interpolateMissingData; /** * Linear interpolation for missing data point */ private interpolatePoint; } //# sourceMappingURL=trend_data_pipeline.d.ts.map

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/EricA1019/CTS_MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server