data-analysis.mdβ’4.76 kB
---
name: "Data Analysis"
description: "Statistical analysis, visualization, and insights extraction from datasets"
type: "skill"
version: "1.0.0"
author: "DollhouseMCP"
created: "2025-07-23"
category: "analytics"
tags: ["data", "statistics", "visualization", "insights", "analytics"]
proficiency_levels:
beginner: "Basic statistics and simple charts"
intermediate: "Correlation analysis and trend detection"
advanced: "Predictive modeling and complex visualizations"
parameters:
analysis_type:
type: "array"
description: "Types of analysis to perform"
default: ["descriptive", "diagnostic"]
enum: ["descriptive", "diagnostic", "predictive", "prescriptive"]
visualization_format:
type: "string"
description: "Preferred visualization format"
default: "auto"
enum: ["auto", "charts", "tables", "narrative", "dashboard"]
confidence_level:
type: "number"
description: "Statistical confidence level"
default: 0.95
min: 0.90
max: 0.99
handle_missing_data:
type: "string"
description: "How to handle missing values"
default: "interpolate"
enum: ["ignore", "interpolate", "drop", "flag"]
_dollhouseMCPTest: true
_testMetadata:
suite: "bundled-test-data"
purpose: "General test data for DollhouseMCP system validation"
created: "2025-08-20"
version: "1.0.0"
migrated: "2025-08-20T23:47:24.346Z"
originalPath: "data/skills/data-analysis.md"
---
# Data Analysis Skill
This skill provides comprehensive data analysis capabilities for extracting insights, identifying patterns, and making data-driven recommendations.
## Core Capabilities
### 1. Descriptive Analysis
- **Central Tendency**: Mean, median, mode
- **Dispersion**: Standard deviation, variance, range
- **Distribution**: Skewness, kurtosis, percentiles
- **Frequency**: Histograms, frequency tables
### 2. Diagnostic Analysis
- **Correlation Analysis**: Pearson, Spearman, Kendall
- **Regression**: Linear, logistic, polynomial
- **Time Series**: Trends, seasonality, decomposition
- **Anomaly Detection**: Outliers, unusual patterns
### 3. Predictive Analysis
- **Forecasting**: Time series prediction
- **Classification**: Category prediction
- **Clustering**: Group identification
- **Probability**: Risk assessment
### 4. Visualization
- **Charts**: Line, bar, scatter, pie, heatmap
- **Distributions**: Histograms, box plots, violin plots
- **Relationships**: Scatter plots, correlation matrices
- **Comparisons**: Grouped bars, stacked charts
## Analysis Process
### Step 1: Data Profiling
```
Dataset Overview:
- Rows: 10,432
- Columns: 15
- Missing values: 2.3%
- Data types: 5 numeric, 8 categorical, 2 datetime
```
### Step 2: Quality Assessment
- Completeness check
- Consistency validation
- Outlier identification
- Data type verification
### Step 3: Analysis Execution
- Apply statistical methods
- Generate visualizations
- Extract key findings
- Identify patterns
### Step 4: Insight Generation
- Summarize findings
- Highlight anomalies
- Provide recommendations
- Suggest next steps
## Output Formats
### 1. Executive Summary
```
Key Findings:
β’ Sales increased 23% year-over-year
β’ Customer retention improved by 15%
β’ Regional performance varies significantly
β’ Seasonal patterns strongly influence demand
```
### 2. Detailed Report
```
Statistical Analysis Results:
Correlation Matrix:
Sales Marketing Satisfaction
Sales 1.00 0.82 0.65
Marketing 0.82 1.00 0.54
Satisfaction 0.65 0.54 1.00
Regression Analysis:
Sales = 1,234 + 2.5ΓMarketing + 156ΓSatisfaction
RΒ² = 0.78, p < 0.001
```
### 3. Visual Dashboard
```
[Chart: Monthly Sales Trend]
π ββββββββββββββββββββ
β β±β² β±β²
β β±β² β² β± β²
β β±β² β²β± β²
ββββββββββββββββββ
J F M A M J J A S
```
## Special Features
### 1. Natural Language Insights
Converts statistical findings into plain English:
- "Sales peak in December (43% above average)"
- "Customer age strongly correlates with purchase frequency (r=0.72)"
- "Northern region underperforms by 18% compared to others"
### 2. Automated Recommendations
Based on analysis results:
- "Consider increasing marketing spend in Q3"
- "Focus on customer retention in 25-34 age group"
- "Investigate northern region performance issues"
### 3. Interactive Analysis
- Drill-down capabilities
- What-if scenarios
- Sensitivity analysis
- Custom segmentation
## Integration Notes
Works well with:
- Business Consultant persona for strategic insights
- Technical Analyst for deep-dive investigations
- Report templates for standardized output
- Dashboard agents for real-time monitoring