Skip to main content
Glama

LumenX-MCP Legal Spend Intelligence Server

by DatSciX-CEO
MIT License
2

A Model Context Protocol (MCP) server for intelligent legal spend analysis across multiple data sources. Part of the LumenX suite powered by DatSciX.

🚀 Features

  • Multi-Source Integration: Connect to multiple data sources simultaneously
    • LegalTracker API integration
    • Database support (PostgreSQL, SQL Server, Oracle)
    • File imports (CSV, Excel)
  • Comprehensive Analytics:
    • Spend summaries by period, department, practice area
    • Vendor performance analysis
    • Budget vs. actual comparisons
    • Transaction search capabilities
  • MCP Compliant: Full implementation of Model Context Protocol standards
  • Async Architecture: High-performance asynchronous data processing
  • Extensible Design: Easy to add new data sources and analytics

📋 Prerequisites

  • Python 3.10 or higher
  • Access to one or more supported data sources
  • MCP-compatible client (e.g., Claude Desktop)

🛠️ Installation

Using pip

pip install legal-spend-mcp

From Source

# Clone the repository git clone https://github.com/DatSciX-CEO/LumenX-MCP.git cd LumenX-MCP # Create virtual environment python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate # Install dependencies pip install -e .
# Install uv if not already installed pip install uv # Clone and install git clone https://github.com/DatSciX-CEO/LumenX-MCP.git cd LumenX-MCP uv pip install -e .

⚙️ Configuration

  1. Copy the environment template:
cp .env.template .env
  1. Edit .env with your data source credentials:
# Enable the data sources you want to use LEGALTRACKER_ENABLED=true LEGALTRACKER_API_KEY=your_api_key_here LEGALTRACKER_BASE_URL=https://api.legaltracker.com # Database connections (optional) SAP_ENABLED=false SAP_HOST=your_sap_host SAP_PORT=1433 SAP_DATABASE=your_database SAP_USER=your_username SAP_PASSWORD=your_password # File sources (optional) CSV_ENABLED=true CSV_FILE_PATH=/path/to/legal_spend.csv

🚀 Quick Start

Running the Server

# Using the installed command legal-spend-mcp # Or using Python python -m legal_spend_mcp.server

Configure with Claude Desktop

Add to your Claude Desktop configuration (claude_config.json):

{ "mcpServers": { "legal-spend": { "command": "legal-spend-mcp", "env": { "LEGALTRACKER_ENABLED": "true", "LEGALTRACKER_API_KEY": "your_api_key" } } } }

📚 Available Tools

Get aggregated spend data with filtering options.

Parameters:

  • start_date (required): Start date in YYYY-MM-DD format
  • end_date (required): End date in YYYY-MM-DD format
  • department (optional): Filter by department
  • practice_area (optional): Filter by practice area
  • vendor (optional): Filter by vendor name
  • data_source (optional): Query specific data source

Example:

result = await get_legal_spend_summary( start_date="2024-01-01", end_date="2024-12-31", department="Legal" )

get_vendor_performance

Analyze performance metrics for a specific vendor.

Parameters:

  • vendor_name (required): Name of the vendor
  • start_date (required): Start date in YYYY-MM-DD format
  • end_date (required): End date in YYYY-MM-DD format
  • include_benchmarks (optional): Include industry comparisons

get_budget_vs_actual

Compare actual spending against budgeted amounts.

Parameters:

  • department (required): Department name
  • start_date (required): Start date in YYYY-MM-DD format
  • end_date (required): End date in YYYY-MM-DD format
  • budget_amount (required): Budget amount to compare

Search for specific transactions across all data sources.

Parameters:

  • search_term (required): Search query
  • start_date (optional): Start date filter
  • end_date (optional): End date filter
  • min_amount (optional): Minimum amount filter
  • max_amount (optional): Maximum amount filter
  • limit (optional): Maximum results (default: 50)

📊 Resources

The server provides several MCP resources for reference data:

  • legal_vendors: List of all vendors across data sources
  • data_sources: Status and configuration of data sources
  • spend_categories: Available categories and practice areas
  • spend_overview://recent: Recent spend activity overview

🔌 Supported Data Sources

  • Real-time invoice and matter data
  • Vendor management information
  • Practice area classifications

Databases

  • PostgreSQL: Full support for legal spend tables
  • SQL Server: Compatible with SAP and other ERP systems
  • Oracle: Enterprise financial system integration

File Imports

  • CSV: Standard comma-separated values
  • Excel: .xlsx files with configurable sheet names

📝 Data Model

The server uses a standardized data model for legal spend records:

@dataclass class LegalSpendRecord: invoice_id: str vendor_name: str vendor_type: VendorType matter_id: Optional[str] matter_name: Optional[str] department: str practice_area: PracticeArea invoice_date: date amount: Decimal currency: str expense_category: str description: str # ... additional fields

🧪 Testing

Run the test suite:

# Run all tests pytest # Run with coverage pytest --cov=legal_spend_mcp # Run specific test file pytest tests/test_server.py

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

Please ensure:

  • All tests pass
  • Code follows the project style guide
  • Documentation is updated
  • Commit messages are descriptive

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

📞 Support

🗺️ Roadmap

  • Additional data source integrations
  • Machine learning-based spend predictions
  • Automated anomaly detection
  • Enhanced benchmark analytics
  • GraphQL API support
  • Real-time notifications

Related MCP Servers

  • -
    security
    A
    license
    -
    quality
    The MCP Trader Server conducts comprehensive technical analysis on stocks, offering insights into trends, momentum indicators, volatility metrics, and volume analysis to support stock trading decisions.
    Last updated -
    147
    Python
    MIT License
    • Apple
  • -
    security
    F
    license
    -
    quality
    An enterprise-grade MCP server that provides specialized tools for legal reasoning and analysis, automatically detecting legal domains and offering domain-specific guidance, templates, and citation formatting.
    Last updated -
    TypeScript
    • Apple
  • A
    security
    F
    license
    A
    quality
    An MCP server that provides comprehensive Excel file operations, data analysis, and visualization capabilities for working with various spreadsheet formats like XLSX, CSV, and JSON.
    Last updated -
    8
    36
    Python
  • A
    security
    A
    license
    A
    quality
    An open-source MCP server that connects to various data sources (SQL databases, CSV, Parquet files), allowing AI models to execute SQL queries and generate data visualizations for analytics and business intelligence.
    Last updated -
    10
    35
    Python
    MIT License
    • Linux
    • Apple

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/DatSciX-CEO/LumenX-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server