# DillyDallyMCP
A Model Context Protocol (MCP) server ready for Dedalus deployment.
## Setup
### 1. Initialize Git Repository
```bash
cd dedalus-mcp
git init
git add .
git commit -m "Initial commit: Dedalus MCP server"
```
### 2. Create Remote Repository
Create a new repository on GitHub/GitLab/etc. named `DillyDallyMCP`, then:
```bash
git remote add origin <your-repo-url>
git branch -M main
git push -u origin main
```
### 3. Configure Environment Variables
Create a `.env.local` file in the `dedalus-mcp` folder:
```bash
CONVEX_URL=https://your-deployment.convex.cloud
```
You can find your Convex URL in:
- The monorepo root `.env.local` file (if running locally)
- Your Convex dashboard
- By running `npx convex dev` from the monorepo root
**Note:** The `.env.local` file is gitignored and should not be committed.
### 4. Install Dependencies
```bash
npm install
```
### 5. Build
```bash
npm run build
```
## Testing Locally
### STDIO Mode (for MCP clients)
```bash
npm run dev:stdio
```
### HTTP Mode (for testing/debugging)
```bash
npm run dev:http
```
The server will start on `http://localhost:3002`
### Using MCP Inspector
```bash
npm run build
npm run inspector
```
## Deployment to Dedalus
This server follows Dedalus deployment standards:
- ✅ Entry point: `src/index.ts` (or `index.ts` at root)
- ✅ TypeScript server structure
- ✅ Proper package.json configuration
Simply connect your repository to Dedalus and it will automatically detect and deploy the MCP server.
## Project Structure
```
dedalus-mcp/
├── index.ts # Main entry point
├── server.ts # MCP server implementation
├── cli.ts # CLI argument parsing
├── lib/ # Shared utilities
│ └── convexClient.ts # Convex client setup
├── tools/ # MCP tools
│ ├── index.ts
│ ├── addIntegers.ts
│ ├── getRecentActivity.ts
│ ├── getLastSession.ts
│ ├── getProductivityStats.ts
│ ├── getSessionDetails.ts
│ └── getAttentionMetrics.ts
├── transport/ # Transport implementations
│ ├── index.ts
│ ├── http.ts
│ └── stdio.ts
├── package.json
├── tsconfig.json
└── .env.local # Environment variables (create this)
```
## Available Tools
- `add_integers`: Adds two integers together
- `get_recent_activity`: Get recent activity snapshots from DillyDally
- `get_last_session`: Get details of the most recent DillyDally session
- `get_productivity_stats`: Get productivity statistics over a time range
- `get_session_details`: Get detailed information about a specific session
- `get_attention_metrics`: Get attention/focus metrics from camera snapshots
## License
MIT
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/DIodide/DillyDallyMCP'
If you have feedback or need assistance with the MCP directory API, please join our Discord server