Skip to main content
Glama

DillyDallyMCP

by DIodide

DillyDallyMCP

A Model Context Protocol (MCP) server ready for Dedalus deployment.

Setup

1. Initialize Git Repository

cd dedalus-mcp git init git add . git commit -m "Initial commit: Dedalus MCP server"

2. Create Remote Repository

Create a new repository on GitHub/GitLab/etc. named DillyDallyMCP, then:

git remote add origin <your-repo-url> git branch -M main git push -u origin main

3. Configure Environment Variables

Create a .env.local file in the dedalus-mcp folder:

CONVEX_URL=https://your-deployment.convex.cloud

You can find your Convex URL in:

  • The monorepo root .env.local file (if running locally)

  • Your Convex dashboard

  • By running npx convex dev from the monorepo root

Note: The .env.local file is gitignored and should not be committed.

4. Install Dependencies

npm install

5. Build

npm run build

Testing Locally

STDIO Mode (for MCP clients)

npm run dev:stdio

HTTP Mode (for testing/debugging)

npm run dev:http

The server will start on http://localhost:3002

Using MCP Inspector

npm run build npm run inspector

Deployment to Dedalus

This server follows Dedalus deployment standards:

  • ✅ Entry point: src/index.ts (or index.ts at root)

  • ✅ TypeScript server structure

  • ✅ Proper package.json configuration

Simply connect your repository to Dedalus and it will automatically detect and deploy the MCP server.

Project Structure

dedalus-mcp/ ├── index.ts # Main entry point ├── server.ts # MCP server implementation ├── cli.ts # CLI argument parsing ├── lib/ # Shared utilities │ └── convexClient.ts # Convex client setup ├── tools/ # MCP tools │ ├── index.ts │ ├── addIntegers.ts │ ├── getRecentActivity.ts │ ├── getLastSession.ts │ ├── getProductivityStats.ts │ ├── getSessionDetails.ts │ └── getAttentionMetrics.ts ├── transport/ # Transport implementations │ ├── index.ts │ ├── http.ts │ └── stdio.ts ├── package.json ├── tsconfig.json └── .env.local # Environment variables (create this)

Available Tools

  • add_integers: Adds two integers together

  • get_recent_activity: Get recent activity snapshots from DillyDally

  • get_last_session: Get details of the most recent DillyDally session

  • get_productivity_stats: Get productivity statistics over a time range

  • get_session_details: Get detailed information about a specific session

  • get_attention_metrics: Get attention/focus metrics from camera snapshots

License

MIT

One-click Deploy
A
security – no known vulnerabilities
F
license - not found
A
quality - confirmed to work

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/DIodide/DillyDallyMCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server