Skip to main content
Glama

Volume Wall Detector MCP

tools.ts1.52 kB
"use strict"; import { z } from "zod"; import { ToolConfig } from "../types/tools"; import { analyzeVolumeWalls } from "../tools/analyze-volume-walls"; import { fetchOrderBook, fetchTrades } from "./api"; import { storeStockData } from "./mongodb"; export const tools: ToolConfig[] = [ { name: "fetch-order-book", description: "Fetch current order book data for a symbol", parameters: z.object({ symbol: z.string().describe("Stock symbol to fetch order book for") }), execute: async (args) => { const orderBook = await fetchOrderBook(args.symbol); const result = await storeStockData(orderBook, "order_books"); return JSON.stringify(result); } }, { name: "fetch-trades", description: "Fetch recent trades for a symbol", parameters: z.object({ symbol: z.string().describe("Stock symbol to fetch trades for") }), execute: async (args) => { const trades = await fetchTrades(args.symbol); const result = await storeStockData(trades, "trades"); return JSON.stringify(result); } }, { name: "analyze-stock", description: "Analyze stock data including volume and value analysis", parameters: z.object({ symbol: z.string().describe("Stock symbol to analyze"), days: z.number().optional().describe("Number of days to analyze (optional)") }), execute: async (args) => { const result = await analyzeVolumeWalls(args.symbol, args.days); return JSON.stringify(result); } } ];

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Cognitive-Stack/volume-wall-detector-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server