Skip to main content
Glama

CodeLogic

Official
Mozilla Public License 2.0
30
  • Apple
  • Linux
copilot-instructions.md3.11 kB
# CodeLogic MCP Server - AI Assistant Instructions ## About This Codebase This repository contains a Model Context Protocol (MCP) server that integrates with CodeLogic's knowledge graph APIs. It enables AI programming assistants (like GitHub Copilot and Cursor) to access dependency data from CodeLogic to analyze code and database impacts. ## Key Technologies - **Python 3.13+** with extensive use of async/await - **Model Context Protocol SDK** (`mcp[cli]`) - **Neo4j** for graph database operations - **HTTPX** for API requests - **Environment variables** via dotenv for configuration ## Project Structure - **src/codelogic_mcp_server/**: Core package - **`__init__.py`**: Package initialization and entry point - **`server.py`**: MCP server implementation - **`handlers.py`**: Tool handlers implementation - **`utils.py`**: API interaction utilities ## Core Coding Patterns ### MCP Server Pattern ```python server = Server("codelogic-mcp-server") @server.list_tools() async def handle_list_tools() -> list[types.Tool]: # Define and return tools @server.call_tool() async def handle_call_tool(name: str, arguments: dict | None) -> list[types.TextContent]: # Handle tool execution ``` ### Error Handling ```python try: # Operations that might fail except Exception as e: sys.stderr.write(f"Error: {str(e)}\n") return [types.TextContent(type="text", text=f"# Error\n\n{str(e)}")] ``` ## Style Guidelines 1. **Copyright Headers**: Include MPL 2.0 headers in all Python files 2. **Docstrings**: Google-style docstrings for modules/classes/functions 3. **Type Hints**: Always use Python type hints 4. **Asynchronous**: Keep I/O operations asynchronous 5. **Format Outputs**: Return markdown-formatted text in tool responses ## Tool Implementation Pattern When implementing new MCP tools: 1. Add to `handle_list_tools()` with descriptive name (prefix: `codelogic-`) 2. Add handler in `handle_call_tool()` 3. Implement handler function with error handling 4. Return results as markdown-formatted text ## Testing Approach - **Unit Tests**: For functions without external dependencies - **Integration Tests**: For tests against a real CodeLogic server - Use the `CODELOGIC_TEST_MODE` environment variable ## Debugging - Debug Mode: Set `CODELOGIC_DEBUG_MODE=true` - Remote Debugging: Use debugpy capabilities ## Key Environment Variables - `CODELOGIC_SERVER_HOST`: CodeLogic server URL - `CODELOGIC_USERNAME`: Username for authentication - `CODELOGIC_PASSWORD`: Password for authentication - `CODELOGIC_WORKSPACE_NAME`: Workspace name - `CODELOGIC_DEBUG_MODE`: Enable debug logging - `CODELOGIC_TEST_MODE`: Used by test framework ## AI Assistant Integration ### GitHub Copilot - Uses these instructions via `.github/copilot-instructions.md` - Integrates through GitHub's Copilot infrastructure ### Cursor - Uses these instructions via `.cursor/instructions.md` - Integrates through Cursor's AI infrastructure - Supports additional features like: - Direct file editing - Terminal command execution - Code search and analysis - Database impact analysis

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/CodeLogicIncEngineering/codelogic-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server