create_monitor
Create Datadog monitors for anomaly detection, APM, logs, metrics, SLOs, and other alert types using customizable query parameters and threshold settings.
Instructions
Create a monitor using the specified options.
Monitor Types
The type of monitor chosen from:
anomaly:
query alert
APM:
query alert
ortrace-analytics alert
composite:
composite
custom:
service check
forecast:
query alert
host:
service check
integration:
query alert
orservice check
live process:
process alert
logs:
log alert
metric:
query alert
network:
service check
outlier:
query alert
process:
service check
rum:
rum alert
SLO:
slo alert
watchdog:
event-v2 alert
event-v2:
event-v2 alert
audit:
audit alert
error-tracking:
error-tracking alert
database-monitoring:
database-monitoring alert
network-performance:
network-performance alert
cloud cost:
cost alert
Notes:
Synthetic monitors are created through the Synthetics API. See the Synthetics API documentation for more information.
Log monitors require an unscoped App Key.
Query Types
Metric Alert Query
Example: time_aggr(time_window):space_aggr:metric{tags} [by {key}] operator #
time_aggr
: avg, sum, max, min, change, or pct_changetime_window
:last_#m
(with#
between 1 and 10080 depending on the monitor type) orlast_#h
(with#
between 1 and 168 depending on the monitor type) orlast_1d
, orlast_1w
space_aggr
: avg, sum, min, or maxtags
: one or more tags (comma-separated), or *key
: a 'key' in key:value tag syntax; defines a separate alert for each tag in the group (multi-alert)operator
: <, <=, >, >=, ==, or !=#
: an integer or decimal number used to set the threshold
If you are using the _change_
or _pct_change_
time aggregator, instead use change_aggr(time_aggr(time_window),
timeshift):space_aggr:metric{tags} [by {key}] operator #
with:
change_aggr
change, pct_changetime_aggr
avg, sum, max, min Learn moretime_window
last_#m (between 1 and 2880 depending on the monitor type), last_#h (between 1 and 48 depending on the monitor type), or last_#d (1 or 2)timeshift
#m_ago (5, 10, 15, or 30), #h_ago (1, 2, or 4), or 1d_ago
Use this to create an outlier monitor using the following query:
avg(last_30m):outliers(avg:system.cpu.user{role:es-events-data} by {host}, 'dbscan', 7) > 0
Service Check Query
Example: "check".over(tags).last(count).by(group).count_by_status()
check
name of the check, for exampledatadog.agent.up
tags
one or more quoted tags (comma-separated), or "*". for example:.over("env:prod", "role:db")
;over
cannot be blank.count
must be at greater than or equal to your max threshold (defined in theoptions
). It is limited to 100. For example, if you've specified to notify on 1 critical, 3 ok, and 2 warn statuses,count
should be at least 3.group
must be specified for check monitors. Per-check grouping is already explicitly known for some service checks. For example, Postgres integration monitors are tagged bydb
,host
, andport
, and Network monitors byhost
,instance
, andurl
. See Service Checks documentation for more information.
Event Alert Query
Note: The Event Alert Query has been replaced by the Event V2 Alert Query. For more information, see the Event Migration guide.
Event V2 Alert Query
Example: events(query).rollup(rollup_method[, measure]).last(time_window) operator #
query
The search query - following the Log search syntax.rollup_method
The stats roll-up method - supportscount
,avg
andcardinality
.measure
Foravg
and cardinalityrollup_method
- specify the measure or the facet name you want to use.time_window
#m (between 1 and 2880), #h (between 1 and 48).operator
<
,<=
,>
,>=
,==
, or!=
.#
an integer or decimal number used to set the threshold.
Process Alert Query
Example: processes(search).over(tags).rollup('count').last(timeframe) operator #
search
free text search string for querying processes. Matching processes match results on the Live Processes page.tags
one or more tags (comma-separated)timeframe
the timeframe to roll up the counts. Examples: 10m, 4h. Supported timeframes: s, m, h and doperator
<, <=, >, >=, ==, or !=#
an integer or decimal number used to set the threshold
Logs Alert Query
Example: logs(query).index(index_name).rollup(rollup_method[, measure]).last(time_window) operator #
query
The search query - following the Log search syntax.index_name
For multi-index organizations, the log index in which the request is performed.rollup_method
The stats roll-up method - supportscount
,avg
andcardinality
.measure
Foravg
and cardinalityrollup_method
- specify the measure or the facet name you want to use.time_window
#m (between 1 and 2880), #h (between 1 and 48).operator
<
,<=
,>
,>=
,==
, or!=
.#
an integer or decimal number used to set the threshold.
Composite Query
Example: 12345 && 67890
, where 12345
and 67890
are the IDs of non-composite monitors
name
[required, default = dynamic, based on query]: The name of the alert.message
[required, default = dynamic, based on query]: A message to include with notifications for this monitor. Email notifications can be sent to specific users by using the same '@username' notation as events.tags
[optional, default = empty list]: A list of tags to associate with your monitor. When getting all monitor details via the API, use themonitor_tags
argument to filter results by these tags. It is only available via the API and isn't visible or editable in the Datadog UI.
SLO Alert Query
Example: error_budget("slo_id").over("time_window") operator #
slo_id
: The alphanumeric SLO ID of the SLO you are configuring the alert for.time_window
: The time window of the SLO target you wish to alert on. Valid options:7d
,30d
,90d
.operator
:>=
or>
Audit Alert Query
Example: audits(query).rollup(rollup_method[, measure]).last(time_window) operator #
query
The search query - following the Log search syntax.rollup_method
The stats roll-up method - supportscount
,avg
andcardinality
.measure
Foravg
and cardinalityrollup_method
- specify the measure or the facet name you want to use.time_window
#m (between 1 and 2880), #h (between 1 and 48).operator
<
,<=
,>
,>=
,==
, or!=
.#
an integer or decimal number used to set the threshold.
CI Pipelines Alert Query
Example: ci-pipelines(query).rollup(rollup_method[, measure]).last(time_window) operator #
query
The search query - following the Log search syntax.rollup_method
The stats roll-up method - supportscount
,avg
, andcardinality
.measure
Foravg
and cardinalityrollup_method
- specify the measure or the facet name you want to use.time_window
#m (between 1 and 2880), #h (between 1 and 48).operator
<
,<=
,>
,>=
,==
, or!=
.#
an integer or decimal number used to set the threshold.
CI Tests Alert Query
Example: ci-tests(query).rollup(rollup_method[, measure]).last(time_window) operator #
query
The search query - following the Log search syntax.rollup_method
The stats roll-up method - supportscount
,avg
, andcardinality
.measure
Foravg
and cardinalityrollup_method
- specify the measure or the facet name you want to use.time_window
#m (between 1 and 2880), #h (between 1 and 48).operator
<
,<=
,>
,>=
,==
, or!=
.#
an integer or decimal number used to set the threshold.
Error Tracking Alert Query
"New issue" example: error-tracking(query).source(issue_source).new().rollup(rollup_method[, measure]).by(group_by).last(time_window) operator #
"High impact issue" example: error-tracking(query).source(issue_source).impact().rollup(rollup_method[, measure]).by(group_by).last(time_window) operator #
query
The search query - following the Log search syntax.issue_source
The issue source - supportsall
,browser
,mobile
andbackend
and defaults toall
if omitted.rollup_method
The stats roll-up method - supportscount
,avg
, andcardinality
and defaults tocount
if omitted.measure
Foravg
and cardinalityrollup_method
- specify the measure or the facet name you want to use.group by
Comma-separated list of attributes to group by - should contain at leastissue.id
.time_window
#m (between 1 and 2880), #h (between 1 and 48).operator
<
,<=
,>
,>=
,==
, or!=
.#
an integer or decimal number used to set the threshold.
Database Monitoring Alert Query
Example: database-monitoring(query).rollup(rollup_method[, measure]).last(time_window) operator #
query
The search query - following the Log search syntax.rollup_method
The stats roll-up method - supportscount
,avg
, andcardinality
.measure
Foravg
and cardinalityrollup_method
- specify the measure or the facet name you want to use.time_window
#m (between 1 and 2880), #h (between 1 and 48).operator
<
,<=
,>
,>=
,==
, or!=
.#
an integer or decimal number used to set the threshold.
Network Performance Alert Query
Example: network-performance(query).rollup(rollup_method[, measure]).last(time_window) operator #
query
The search query - following the Log search syntax.rollup_method
The stats roll-up method - supportscount
,avg
, andcardinality
.measure
Foravg
and cardinalityrollup_method
- specify the measure or the facet name you want to use.time_window
#m (between 1 and 2880), #h (between 1 and 48).operator
<
,<=
,>
,>=
,==
, or!=
.#
an integer or decimal number used to set the threshold.
Cost Alert Query
Example: formula(query).timeframe_type(time_window).function(parameter) operator #
query
The search query - following the Log search syntax.timeframe_type
The timeframe type to evaluate the cost - forforecast
supportscurrent
- forchange
,anomaly
,threshold
supportslast
time_window
- supports daily roll-up e.g.7d
function
- [optional, defaults tothreshold
monitor if omitted] supportschange
,anomaly
,forecast
parameter
Specify the parameter of the typefor
change
:supports
relative
,absolute
[optional] supports
#
, where#
is an integer or decimal number used to set the threshold
for
anomaly
:supports
direction=both
,direction=above
,direction=below
[optional] supports
threshold=#
, where#
is an integer or decimal number used to set the threshold
operator
for
threshold
supports<
,<=
,>
,>=
,==
, or!=
for
change
supports>
,<
for
anomaly
supports>=
for
forecast
supports>
#
an integer or decimal number used to set the threshold.
Input Schema
Name | Required | Description | Default |
---|---|---|---|
No arguments |