CHANGELOG.md•5.85 kB
# Changelog
All notable changes to the LogAnalyzer MCP Server will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [1.0.0] - 2024-01-23
### 🎉 Initial Release
The first stable release of LogAnalyzer MCP Server - AI-powered log analysis for the Model Context Protocol ecosystem.
### ✨ Features
#### Core Analysis
- **AI-Powered Log Analysis**: Intelligent error detection and root cause analysis using Google Gemini
- **Multi-Format Support**: Automatic detection and parsing of JSON and plain text logs
- **Smart Error Extraction**: Advanced pattern matching for errors, exceptions, and stack traces
- **Context Preservation**: Maintains relevant context around errors for better analysis
#### Real-time Monitoring
- **File Watching**: Monitor log files for new errors in real-time
- **Multiple File Support**: Watch multiple log files simultaneously
- **Configurable Polling**: Adjustable monitoring intervals for different use cases
- **Background Processing**: Efficient incremental processing of log file changes
#### MCP Integration
- **5 MCP Tools**: Complete set of tools for log analysis workflows
- `analyze_log`: AI-powered log analysis
- `watch_log_file`: Start real-time monitoring
- `stop_watching`: Stop file monitoring
- `list_watched_files`: View active monitoring
- `get_recent_errors`: Retrieve recent error analysis
- **MCP Resources**: Access to recent errors and monitoring status
- **Standard Compliance**: Full MCP protocol implementation
#### Developer Experience
- **TypeScript**: Full TypeScript implementation with type safety
- **CLI Interface**: Standalone command-line client for testing and direct usage
- **Configuration Management**: Environment-based configuration with validation
- **Comprehensive Testing**: Test suite with sample logs and validation tools
#### Deployment & Integration
- **Docker Support**: Production-ready containerization with docker-compose
- **Cursor AI Integration**: Complete setup guide for Cursor AI editor
- **Claude Desktop Support**: Configuration examples for Claude Desktop
- **Documentation**: Extensive guides, examples, and troubleshooting
### 🛠️ Technical Details
#### Architecture
- **Modular Design**: Separate components for analysis, monitoring, and MCP handling
- **Performance Optimized**: Content truncation, streaming, and efficient file operations
- **Error Handling**: Robust error handling with graceful degradation
- **Security**: Environment variable management and input validation
#### Dependencies
- **@modelcontextprotocol/sdk**: MCP protocol implementation
- **@google/generative-ai**: Gemini AI integration
- **chokidar**: Cross-platform file watching
- **dotenv**: Environment configuration
- **TypeScript**: Type-safe development
### 📚 Documentation
#### Guides
- **README.md**: Installation and quick start guide
- **docs/cursor-integration.md**: Comprehensive Cursor AI setup
- **examples/sample-usage.md**: Real-world usage scenarios
- **CHANGELOG.md**: Version history and updates
#### Examples
- **7 Usage Scenarios**: Web apps, microservices, security, performance, etc.
- **Sample Logs**: Test cases for different log formats and error types
- **Integration Patterns**: CI/CD, monitoring, and analysis workflows
### 🚀 Getting Started
```bash
# Quick installation
git clone <repository-url>
cd loganalyzer-mcp
npm install
echo "GEMINI_API_KEY=your_key" > .env
npm run build
npm run validate
# Test with sample logs
npm run analyze -- test
```
### 🎯 Use Cases
- **Development**: Real-time error monitoring during coding
- **Debugging**: AI-assisted root cause analysis
- **Production Monitoring**: Continuous log surveillance
- **Performance Analysis**: Bottleneck identification and optimization
- **Security Auditing**: Threat detection and analysis
- **DevOps**: CI/CD integration and deployment monitoring
### 📊 Performance
- **Analysis Speed**: < 10 seconds for typical log analysis
- **File Watching**: Efficient polling with configurable intervals
- **Memory Usage**: Optimized for large log files with smart truncation
- **Concurrent Support**: Multiple file monitoring without performance degradation
### 🔧 Configuration
#### Environment Variables
- `GEMINI_API_KEY`: Required for AI analysis
- `LOG_LEVEL`: Logging verbosity (debug, info, warn, error)
- `MAX_FILE_SIZE`: Maximum log file size for processing
- `WATCH_INTERVAL`: Default file polling interval
- `MAX_CONTEXT_TOKENS`: AI context window limit
### 🤝 Community
- **Open Source**: MIT license for community contributions
- **GitHub**: Issues, discussions, and feature requests
- **MCP Ecosystem**: Compatible with all MCP-enabled tools
- **Documentation**: Comprehensive guides for all skill levels
### 🔮 Roadmap
#### Planned Features (v1.1.0)
- [ ] Multiple AI provider support (OpenAI, Anthropic)
- [ ] Web interface for log analysis
- [ ] Log aggregation from multiple sources
- [ ] Custom rule engine for pattern detection
- [ ] Slack/Discord notifications
#### Future Enhancements
- [ ] Persistent storage with PostgreSQL
- [ ] Redis caching for improved performance
- [ ] Grafana integration for visualization
- [ ] Machine learning for anomaly detection
- [ ] Multi-language log format support
### 🙏 Acknowledgments
- Model Context Protocol community for the excellent standard
- Google for providing accessible Gemini AI API
- Cursor AI team for pioneering AI-editor integration
- Open source contributors and early adopters
---
For detailed usage instructions, see [README.md](README.md).
For integration guides, see [docs/cursor-integration.md](docs/cursor-integration.md).
For examples, see [examples/sample-usage.md](examples/sample-usage.md).