Skip to main content
Glama
CaptainCrouton89

MCP Server Boilerplate

mongo-aggregate

Execute aggregation pipelines on MongoDB collections to process and analyze data through multiple transformation stages.

Instructions

Execute aggregation pipeline on a MongoDB collection

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
collectionYesCollection name
databaseYesDatabase name
pipelineYesAggregation pipeline as array of stage objects

Implementation Reference

  • The handler function for the 'mongo-aggregate' tool. It connects to the specified MongoDB database, retrieves the collection, executes the provided aggregation pipeline, formats the results, and returns them as a text content block.
    async ({ database: dbName, collection: collectionName, pipeline }) => { try { const db = await ensureConnection(dbName); const collection: Collection = db.collection(collectionName); const documents = await collection.aggregate(pipeline).toArray(); const formattedOutput = formatJsonOutput(documents); return { content: [ { type: "text", text: `Aggregation returned ${documents.length} document(s):\n\n${formattedOutput}`, }, ], }; } catch (error) { throw new Error(`Failed to execute aggregation: ${error instanceof Error ? error.message : 'Unknown error'}`); } }
  • The input schema for the 'mongo-aggregate' tool using Zod, defining parameters: database, collection, and pipeline.
    { database: z.string().describe("Database name"), collection: z.string().describe("Collection name"), pipeline: z.array(z.record(z.any())).describe("Aggregation pipeline as array of stage objects"), },
  • src/index.ts:233-262 (registration)
    The registration of the 'mongo-aggregate' tool using server.tool(), including name, description, schema, and handler function.
    server.tool( "mongo-aggregate", "Execute aggregation pipeline on a MongoDB collection", { database: z.string().describe("Database name"), collection: z.string().describe("Collection name"), pipeline: z.array(z.record(z.any())).describe("Aggregation pipeline as array of stage objects"), }, async ({ database: dbName, collection: collectionName, pipeline }) => { try { const db = await ensureConnection(dbName); const collection: Collection = db.collection(collectionName); const documents = await collection.aggregate(pipeline).toArray(); const formattedOutput = formatJsonOutput(documents); return { content: [ { type: "text", text: `Aggregation returned ${documents.length} document(s):\n\n${formattedOutput}`, }, ], }; } catch (error) { throw new Error(`Failed to execute aggregation: ${error instanceof Error ? error.message : 'Unknown error'}`); } } );

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/CaptainCrouton89/mongo-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server