Skip to main content
Glama

MCP Server Boilerplate

MCP Server Boilerplate

A starter template for building MCP (Model Context Protocol) servers. This boilerplate provides a clean foundation for creating your own MCP server that can integrate with Claude Desktop, Cursor, Claude Code, Gemini, and other MCP-compatible AI assistants.

Purpose

This boilerplate helps you quickly start building:

  • Custom tools for AI assistants
  • Resource providers for dynamic content
  • Prompt templates for common operations
  • Integration points for external APIs and services

Features

  • Two example tools: "hello-world" and "get-mcp-docs"
  • TypeScript support with ES2022 target and ES modules
  • Multi-client installation scripts (Claude Desktop, Cursor, Claude Code, Gemini, etc.)
  • Automatic npm publishing workflow
  • Environment variable support via .env.local
  • Clean project structure with Zod validation

How It Works

This MCP server template provides:

  1. A basic server setup using the MCP SDK
  2. Example tool implementation
  3. Build and installation scripts
  4. TypeScript configuration for development

The included example demonstrates how to create a simple tool that takes a name parameter and returns a greeting.

Getting Started

You can use this MCP server directly without cloning:

# Run the server directly with npx npx @r-mcp/boilerplate

Option 2: Customize and Develop

# Clone the boilerplate git clone <your-repo-url> cd mcp-server-boilerplate # Install dependencies pnpm install # Build the project pnpm run build # Start the server pnpm start

Installation Scripts

This boilerplate includes convenient installation scripts for different MCP clients:

# Install to all MCP clients (Claude Desktop, Cursor, Claude Code, Gemini, MCP) pnpm run install-server # Install to specific clients pnpm run install-desktop # Claude Desktop pnpm run install-cursor # Cursor IDE pnpm run install-code # Claude Code CLI pnpm run install-code-library # Claude Code Library (~/.claude/mcp-library/) pnpm run install-mcp # Local .mcp.json for development # You can also combine multiple targets: node scripts/update-config.js cursor code desktop

These scripts will:

  • Build the project automatically (TypeScript compilation + chmod permissions)
  • Configure clients to use npx @r-mcp/<directory-name>@latest (auto-updating)
  • Only the local .mcp.json uses the development version (node dist/index.js)
  • Include environment variables from .env.local if present

Publishing Your Server

To publish your customized MCP server:

# Build, commit, and publish to npm in one command pnpm run release

This script (scripts/build-and-publish.js) will:

  1. Commit any pending changes first
  2. Update package name to @r-mcp/<directory-name>
  3. Update bin name to match directory
  4. Increment patch version automatically
  5. Build the TypeScript project
  6. Commit version bump to git
  7. Push to remote repository
  8. Publish to npm with public access

Usage with MCP Clients

The installation scripts automatically configure your MCP clients. For reference, here's what gets added:

Production Clients (Claude Desktop, Cursor, Claude Code, Gemini):

{ "mcpServers": { "boilerplate": { "command": "npx", "args": ["-y", "@r-mcp/boilerplate@latest"], "env": { // Environment variables from .env.local are included here } } } }

Local Development (.mcp.json):

{ "mcpServers": { "boilerplate": { "command": "node", "args": ["/absolute/path/to/dist/index.js"], "env": { // Environment variables from .env.local are included here } } } }

After running installation scripts, restart your MCP client to connect to the server.

Customizing Your Server

Adding Tools

Tools are functions that the AI assistant can call. Here's the basic structure:

server.tool( "tool-name", "Description of what the tool does", { // Zod schema for parameters param1: z.string().describe("Description of parameter"), param2: z.number().optional().describe("Optional parameter"), }, async ({ param1, param2 }) => { // Your tool logic here return { content: [ { type: "text", text: "Your response", }, ], }; } );

Adding Resources

Resources provide dynamic content that the AI can access:

server.resource( "resource://example/{id}", "Description of the resource", async (uri) => { // Extract parameters from URI const id = uri.path.split("/").pop(); return { contents: [ { uri, mimeType: "text/plain", text: `Content for ${id}`, }, ], }; } );

Adding Prompts

Prompts are reusable templates:

server.prompt( "prompt-name", "Description of the prompt", { // Parameters for the prompt topic: z.string().describe("The topic to discuss"), }, async ({ topic }) => { return { description: `A prompt about ${topic}`, messages: [ { role: "user", content: { type: "text", text: `Please help me with ${topic}`, }, }, ], }; } );

Project Structure

├── src/ │ └── index.ts # Main MCP server implementation ├── scripts/ │ ├── update-config.js # Multi-client configuration installer │ └── build-and-publish.js # Automated npm publishing workflow ├── dist/ # Compiled JavaScript (generated) ├── package.json # Project configuration ├── tsconfig.json # TypeScript configuration ├── CLAUDE.md # Claude Code instructions ├── .env.local # Environment variables (optional) └── README.md # This file

Development Workflow

Local Development

  1. Make changes to src/index.ts
  2. Run pnpm run build to compile TypeScript
  3. Test your server with pnpm start
  4. Use pnpm run install-mcp for local testing
  5. Restart your MCP client to load changes

Publishing Updates

  1. Test your changes locally
  2. Run pnpm run release to publish to npm
  3. Clients using npx @r-mcp/<your-package>@latest auto-update
  4. No client reconfiguration needed

Environment Variables

Create a .env.local file for environment-specific configuration:

# .env.local API_KEY=your-api-key DATABASE_URL=your-database-url

These variables are automatically included in MCP server configurations during installation.

Next Steps

  1. Fork or clone this boilerplate
  2. Customize the server name and tools in src/index.ts
  3. Add your own tools, resources, and prompts
  4. Configure environment variables in .env.local
  5. Run pnpm run release to publish your server
  6. Install to clients with pnpm run install-server

License

MIT

-
security - not tested
F
license - not found
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

A starter template for building custom MCP servers that can integrate with Claude Desktop, Cursor, and other AI assistants. Provides example tools, TypeScript support, and automated publishing workflows to help developers create their own AI assistant integrations.

  1. Purpose
    1. Features
      1. How It Works
        1. Getting Started
          1. Option 1: Use the Published Package (Recommended)
          2. Option 2: Customize and Develop
        2. Installation Scripts
          1. Publishing Your Server
            1. Usage with MCP Clients
              1. Production Clients (Claude Desktop, Cursor, Claude Code, Gemini):
              2. Local Development (.mcp.json):
            2. Customizing Your Server
              1. Adding Tools
              2. Adding Resources
              3. Adding Prompts
            3. Project Structure
              1. Development Workflow
                1. Local Development
                2. Publishing Updates
              2. Environment Variables
                1. Next Steps
                  1. License

                    Related MCP Servers

                    • A
                      security
                      F
                      license
                      A
                      quality
                      A starter template for building Model Context Protocol servers that can be integrated with Cursor or Claude Desktop, allowing developers to create custom tools and extensions for AI assistants.
                      Last updated -
                      1
                      9
                      14
                      • Apple
                    • A
                      security
                      A
                      license
                      A
                      quality
                      A foundation for building custom local Model Context Protocol (MCP) servers that provide tools accessible to AI assistants like Cursor or Claude Desktop.
                      Last updated -
                      1
                      28
                      MIT License
                    • -
                      security
                      F
                      license
                      -
                      quality
                      An open source toolkit that converts 280+ integrations into MCP servers for use with Claude Desktop, Cursor, or Windsurf, enabling AI automation through a type-safe pieces framework written in TypeScript.
                      Last updated -
                    • A
                      security
                      F
                      license
                      A
                      quality
                      A starter template for building Model Context Protocol servers that integrate with AI assistants like Claude and Cursor, providing custom tools, resource providers, and prompt templates.
                      Last updated -
                      2

                    View all related MCP servers

                    MCP directory API

                    We provide all the information about MCP servers via our MCP API.

                    curl -X GET 'https://glama.ai/api/mcp/v1/servers/CaptainCrouton89/mongo-mcp'

                    If you have feedback or need assistance with the MCP directory API, please join our Discord server