Skip to main content
Glama

Physics MCP Server

by BlinkZer0
phase4-examples.json7.19 kB
{ "data_fft_example": { "description": "GPU-accelerated FFT analysis of a test signal", "request": { "jsonrpc": "2.0", "id": "fft_test", "method": "tools/call", "params": { "name": "data_fft", "arguments": { "signal_data": [0, 0.707, 1, 0.707, 0, -0.707, -1, -0.707, 0, 0.707, 1, 0.707, 0, -0.707, -1, -0.707], "sample_rate": 8, "window": "hann", "emit_plots": true, "emit_csv": true } } } }, "data_filter_example": { "description": "Digital filtering with response analysis", "request": { "jsonrpc": "2.0", "id": "filter_test", "method": "tools/call", "params": { "name": "data_filter", "arguments": { "signal_data": [1, 2, 3, 4, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -4, -3, -2, -1, 0], "sample_rate": 10, "filter_type": "lowpass", "cutoff_freq": 2, "filter_order": 4, "emit_plots": true } } } }, "data_spectrogram_example": { "description": "Time-frequency analysis with spectrogram", "request": { "jsonrpc": "2.0", "id": "spectrogram_test", "method": "tools/call", "params": { "name": "data_spectrogram", "arguments": { "signal_data": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0], "sample_rate": 20, "window_size": 8, "overlap": 0.5, "emit_plots": true } } } }, "api_arxiv_example": { "description": "Search arXiv for physics papers", "request": { "jsonrpc": "2.0", "id": "arxiv_test", "method": "tools/call", "params": { "name": "api_arxiv", "arguments": { "query": "quantum mechanics", "category": "quant-ph", "max_results": 5, "sort_by": "relevance", "download_pdfs": false } } } }, "api_nist_example": { "description": "Access NIST physical constants", "request": { "jsonrpc": "2.0", "id": "nist_test", "method": "tools/call", "params": { "name": "api_nist", "arguments": { "data_type": "constants", "property": "speed_of_light", "format": "json" } } } }, "export_jupyter_example": { "description": "Generate Jupyter notebook from session data", "request": { "jsonrpc": "2.0", "id": "jupyter_test", "method": "tools/call", "params": { "name": "export_jupyter", "arguments": { "notebook_name": "physics_analysis", "title": "Physics MCP Analysis", "description": "Automated analysis using Physics MCP Server", "session_data": { "events": [ { "type": "tool_call", "tool_name": "cas_evaluate", "params": {"expr": "sin(x)", "vars": {"x": 3.14159}}, "result": {"latex": "\\sin(\\pi)", "evalf": 0.0} } ] }, "include_outputs": true, "kernel": "python3" } } } }, "export_github_example": { "description": "Create GitHub repository structure", "request": { "jsonrpc": "2.0", "id": "github_test", "method": "tools/call", "params": { "name": "export_github", "arguments": { "repository_name": "physics-mcp-analysis", "description": "Physics analysis using MCP server", "private": false, "include_artifacts": true, "license": "MIT", "topics": ["physics", "computational-science", "mcp"] } } } }, "data_import_hdf5_example": { "description": "Import HDF5 scientific dataset (requires sample file)", "request": { "jsonrpc": "2.0", "id": "hdf5_test", "method": "tools/call", "params": { "name": "data_import_hdf5", "arguments": { "file_path": "./examples/data/sample.h5", "dataset_path": "/experiment/data", "emit_plots": true } } } }, "export_overleaf_example": { "description": "Create Overleaf LaTeX project", "request": { "jsonrpc": "2.0", "id": "overleaf_test", "method": "tools/call", "params": { "name": "export_overleaf", "arguments": { "project_name": "physics_report", "template": "article", "title": "Physics Analysis Report", "authors": ["Physics MCP User"], "abstract": "This report presents analysis results from the Physics MCP Server.", "artifacts": [ { "type": "figure", "content": "", "caption": "Sample figure", "label": "fig:sample" } ] } } } }, "comprehensive_workflow_example": { "description": "Complete Phase 4 workflow: signal processing → analysis → export", "workflow": [ { "step": 1, "description": "Generate and analyze signal with FFT", "request": { "jsonrpc": "2.0", "id": "workflow_step1", "method": "tools/call", "params": { "name": "data_fft", "arguments": { "signal_data": [0, 0.309, 0.588, 0.809, 0.951, 1, 0.951, 0.809, 0.588, 0.309, 0, -0.309, -0.588, -0.809, -0.951, -1, -0.951, -0.809, -0.588, -0.309], "sample_rate": 20, "window": "hann", "emit_plots": true, "emit_csv": true } } } }, { "step": 2, "description": "Apply filtering to the signal", "request": { "jsonrpc": "2.0", "id": "workflow_step2", "method": "tools/call", "params": { "name": "data_filter", "arguments": { "signal_data": [0, 0.309, 0.588, 0.809, 0.951, 1, 0.951, 0.809, 0.588, 0.309, 0, -0.309, -0.588, -0.809, -0.951, -1, -0.951, -0.809, -0.588, -0.309], "sample_rate": 20, "filter_type": "lowpass", "cutoff_freq": 5, "filter_order": 4, "emit_plots": true } } } }, { "step": 3, "description": "Export results to GitHub repository", "request": { "jsonrpc": "2.0", "id": "workflow_step3", "method": "tools/call", "params": { "name": "export_github", "arguments": { "repository_name": "signal-analysis-workflow", "description": "Signal processing workflow using Physics MCP", "include_artifacts": true, "topics": ["signal-processing", "fft", "filtering"] } } } } ] } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BlinkZer0/Phys-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server